
pyEQL Documentation
Release v0.8.0

Ryan Kingsbury

Sep 28, 2023

CONTENTS

1 Description 3
1.1 Key Features . 3

Python Module Index 29

Index 31

i

ii

pyEQL Documentation, Release v0.8.0

CONTENTS 1

pyEQL Documentation, Release v0.8.0

2 CONTENTS

CHAPTER

ONE

DESCRIPTION

pyEQL is a Python library that provides tools for modeling aqueous electrolyte solutions. It allows the user to manipu-
late solutions as Python objects, providing methods to populate them with solutes, calculate species-specific properties
(such as activity and diffusion coefficients), and retrieve bulk properties (such as density, conductivity, or volume).

pyeql-demo.png

pyEQL is designed to be customizable and easy to integrate into projects that require modeling of chemical ther-
modyanmics of aqueous solutions. It aspires to provide a flexible, extensible framework for the user, with a high level
of transparency about data sources and calculation methods.

pyEQL runs on Python 3.8+ and is licensed under LGPL.

1.1 Key Features

• Build accurate solution properties using a minimum of inputs. Just specify the identity and quantity of a solute
and pyEQL will do the rest.

• “Graceful Decay” from more sophisticated, data-intensive modeling approaches to simpler, less accurate ones
depending on the amount of data supplied.

• Not limited to dilute solutions. pyEQL contains out of the box support for the Pitzer Model and other methods
for modeling concentrated solutions.

• Extensible database system that allows one to supplement pyEQL’s default parameters with project-specific data.

• Units-aware calculations (by means of the pint library)

Contents:

3

https://github.com/hgrecco/pint

pyEQL Documentation, Release v0.8.0

1.1.1 Installation

Use a conda environment

We highly recommend installing python in an isolated environment using conda (or its speedier, backward-compatible
successor, mamba). In particular, we recommend the miniforge or mambaforge distributions of Python, which are
lightweight distributions of conda that automatically activate the conda-forge channel for up-to-date scientific pack-
ages.

Note: If you are on a Windows machine, we recommend you install the Windows Subsystem for Linux (WSL) and set
up your conda environments inside the WSL environment.

After installing conda / mamba, follow their instructions to create an environment. The steps should be similar to the
following:

1. Open your terminal (or “Anaconda prompt” or “Miniforge prompt” on Windows)

2. Pick a name for your environment (note: you can create many environments if you want)

3. type conda create -n <name-you-picked> python=3.10 (if you install miniforge) or mamba create -n
<name-you-picked> python=3.10 (if you installed mambaforge) and press enter

4. After the environment is installed, type conda activate <name-you-picked> / mamba activate
<name-you-picked> and press enter

pip install

Once Python is installed and your environment is activated you can install pyEQL from PyPi by typing the following
command:

pip install pyEQL

This should automatically pull in the required dependencies as well.

Important: If you are NOT using a conda environment, may have to run ‘pip3’ rather than ‘pip’. This will be the
case if Python 2.x and Python 3.x are installed side-by-side on your system. You can tell if this is the case by typing
the following command:

$ python --version
Python 2.7.12

This means Python 2.x is installed. If you run ‘pip install’ it will point to the Python 2.7 installation, but pyEQL only
works on Python 3. So, try this:

$ python3 --version
Python 3.9.7

To get to Python 3.x, you have to type ‘python3’. In this case, you would run ‘pip3 install’

4 Chapter 1. Description

https://docs.conda.io/en/latest/
https://mamba.readthedocs.io/en/latest/
https://github.com/conda-forge/miniforge#miniforge3
https://github.com/conda-forge/miniforge#mambaforge
https://learn.microsoft.com/en-us/windows/wsl/install
https://pypi.python.org/pypi

pyEQL Documentation, Release v0.8.0

Other dependencies

pyEQL also requires the following packages:

• pint - for automated unit conversion

• pymatgen - used to interpret chemical formulas

• iapws - used to calculate the properties of water

• monty - used for saving and loading Solution objects to files

• maggma - used by the internal property database

• scipy

• numpy

If you use pip to install pyEQL (recommended), they should be installed automatically.

Installing the development branch

If you want to use the bleeding edge (and potentially unstable!) development branch instead of the latest stable release,
you can substitute the following for the above ‘pip install’ command:

pip install git+https://github.com/rkingsbury/pyEQL.git@develop

Manually install via Git

Simply navigate to a directory of your choice on your computer and clone the repository by executing the following
terminal command:

git clone https://github.com/rkingsbury/pyEQL

Then install by executing:

pip install -e pyEQL

Note: You may have to run ‘pip3’ rather than ‘pip’. See the note in the pip install section.

1.1.2 Tutorial

pyEQL creates a new type (Solution class) to represent a chemical solution. It also comes pre-loaded with a database
of diffusion coefficients, activity correction parameters, and other data on a variety of common electrolytes. Virtually
all of the user-facing functions in pyEQL are accessed through the Solution class.

1.1. Key Features 5

https://github.com/hgrecco/pint
https://github.com/materialsproject/pymatgen/
https://github.com/jjgomera/iapws/
https://github.com/materialsvirtuallab/monty
https://materialsproject.github.io/maggma/
http://scipy.org/
http://numpy.org/

pyEQL Documentation, Release v0.8.0

Creating a Solution Object

Create a Solution object by invoking the Solution class:

>>> import pyEQL
>>> s1 = pyEQL.Solution()
>>> s1
<pyEQL.pyEQL.Solution at 0x7f9d188309b0>

If no arguments are specified, pyEQL creates a 1-L solution of water at pH 7 and 25 degC.

More usefully, you can specify solutes and bulk properties:

>>> s2 = pyEQL.Solution({'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'}, pH=8, temperature =
→˓'20 degC', volume='8 L')

Retrieving Solution Properties

Bulk Solution Properties

pyEQL provides a variety of methods to calculate or look up bulk properties like temperature, ionic strength, conduc-
tivity, and density.

>>> s2.volume
8.071524653929277 liter
>>> s2.density
1.0182802742389558 kilogram/liter
>>> s2.conductivity
4.083570230022633 siemens/meter
>>> s2.ionic_strength
0.500000505903012 mole/kilogram

Individual Solute Properties

You can also retrieve properties for individual solutes (or the solvent, water)

>>> s2.get_amount('Na+','mol/L')
0.4946847550064916 mole/liter
>>> s2.get_activity_coefficient('Na+)
0.6838526233869155
>>> s2.get_activity('Na+')
0.3419263116934578
>>> s2.get_property('Na+','transport.diffusion_coefficient')
1.1206048116287536e-05 centimeter2/second

6 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

Units-Aware Calculations using pint

pyEQL uses pint to perform units-aware calculations. The pint library creates Quantity objects that contain both a
magnitude and a unit.

>>> from pyEQL import ureg
>>> test_qty = pyEQL.ureg('1 kg/m**3')
1.0 kilogram/meter3

Many pyEQL methods require physical quantities to be input as strings, then these methods return pint Quantity
objects. A string quantity must contain both a magnitude and a unit (e.g. ‘0.5 mol/L’). In general, pint recognizes
common abbreviations and SI prefixes. Compound units must follow Python math syntax (e.g. cm**2 not cm2).

Pint Quantity objects have several useful attributes. They can be converted to strings:

>>> str(test_qty)
'1.0 kg/m**3'

the magnitude, units, or dimensionality can be retrieved via attributes:

>>> test_qty.magnitude
1.0
>>> test_qty.units
<UnitsContainer({'kilogram': 1.0, 'meter': -3.0})>
>>> test_qty.dimensionality
<UnitsContainer({'[length]': -3.0, '[mass]': 1.0})>

See the pint documentation for more details on creating and manipulating Quantity objects.

Using pyEQL in your projects

To access pyEQL’s main features in your project all that is needed is an import statement:

>>> import pyEQL

In order to directly create Quantity objects, you need to explicitly import UnitRegistry, which you can do as follows:

>>> from pyEQL import ureg
>>> test_qty = ureg('1 kg/m**3')
1.0 kilogram/meter3

Note: Note that the meaning of ureg is equivalent in the above pyEQL examples and in the pint documentation. pyEQL
instantiates its own UnitRegistry (with custom definitions for solution chemistry) and assigns it to the variable ureg.
In most pint examples, the line ureq = UnitRegistry() does the same thing.

Warning: if you use pyEQL in conjunction with another module that also uses pint for units-aware calculations,
you must convert all Quantity objects to strings before passing them to the other module, as pint cannot perform
mathematical operations on units that belong to different “registries.” See the pint documentation for more details.

1.1. Key Features 7

https://github.com/hgrecco/pint
http://pint.readthedocs.io/
http://pint.readthedocs.io/
http://pint.readthedocs.io/

pyEQL Documentation, Release v0.8.0

1.1.3 The Solution Class

The Solution class defines a pythonic interface for creating, modifying, and estimating properties of electrolyte
solutions. It is the core feature of pyEQL and the primary user-facing class.

Creating a solution

A Solution created with no arguments will default to pure water at pH=7, T=25 degrees Celsius, and 1 atm pressure.

>>> from pyEQL import Solution
>>> s1 = Solution()
>>> s1.pH
6.998877352386266

Alternatively, you can use the autogenerate() function to easily create common solutions like seawater:

>>> from pyEQL.functions import autogenerate
>>> s2 = autogenerate('seawater')
<pyEQL.solution.Solution object at 0x7f057de6b0a0>

You can inspect the solutes present in the solution via the components attribute. This comprises a dictionary of solute
formula: moles, where ‘moles’ is the number of moles of that solute in the Solution. Note that the solvent (water) is
present in components, too.

>>> s2.components
{'H2O': 55.34455401423017,
'H+': 7.943282347242822e-09,
'OH-': 8.207436858780226e-06,
'Na+': 0.46758273714962967,
'Mg+2': 0.052661180523467986,
'Ca+2': 0.010251594148212318,
'K+': 0.010177468379526856,
'Sr+2': 9.046483353663286e-05,
'Cl-': 0.54425785619973,
'SO4-2': 0.028151873448454025,
'HCO3-': 0.001712651176926199,
'Br-': 0.0008395244921424563,
'CO3-2': 0.00023825904349479546,
'B(OH)4': 0.0001005389715937341,
'F-': 6.822478260456777e-05,
'B(OH)3': 0.0003134669156396757,
'CO2': 9.515218476861175e-06
}

To get the amount of a specific solute, use get_amount() and specify the units you want:

>>> s2.get_amount('Na+', 'g/L')
<Quantity(10.6636539, 'gram / liter')>

Finally, you can manually create a solution with any list of solutes, temperature, pressure, etc. that you need:

>>> from pyEQL import Solution
>>> s1 = Solution(solutes={'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'},

(continues on next page)

8 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

(continued from previous page)

pH=8,
temperature = '20 degC',
volume='8 L'
)

Class reference

The remainder of this page contains detailed information on each of the methods, attributes, and properties in
Solution. Use the sidebar on the right for easier navigation.

1.1.4 Chemical Formulas

pyEQL interprets the chemical formula of a substance to calculate its molecular weight and formal charge. The formula
is also used as a key to search the database for parameters (e.g. diffusion coefficient) that are used in subsequent
calculations.

How to Enter Valid Chemical Formulas

Generally speaking, type the chemical formula of your solute the “normal” way and pyEQL should be able to inerpret it.
Internally, pyEQL uses a utility function pyEQL.utils.standardize_formula to process all formulas into a standard
form. At present, this is done by passing the formula through the pymatgen.core.ion.Ion class. Anything that the
Ion class can understand will be processed into a valid formula by pyEQL.

Here are some examples:

Substance You enter pyEQL understands
Sodium Chloride “NaCl”, “NaCl(aq)”, or “ClNa” “NaCl(aq)”
Sodium Sulfate “Na(SO4)2” or “NaS2O8” “Na(SO4)2(aq)”
Sodium Ion “Na+”, “Na+1”, “Na1+”, or “Na[+]” “Na[+1]”
Magnesium Ion “Mg+2”, “Mg++”, or “Mg[++]” “Mg[+2]”
Methanol “CH3OH”, “CH4O” “‘CH3OH(aq)’”

Specifically, standardize_formula uses Ion.from_formula(<formula>).reduced_formla (shown in the right
hand column of the table) to identify solutes. Notice that for charged species, the charges are always placed inside
square brackets (e.g., Na[+1]) and always include the charge number (even for monovalent ions). Uncharged species
are always suffixed by (aq) to disambiguate them from solids.

Important: When writing multivalent ion formulas, it is strongly recommended that you put the charge number
AFTER the + or - sign (e.g., type “Mg+2” NOT “Mg2+”). The latter formula is ambiguous - it could mean ‘𝑀𝑔+2 ‘
or ‘𝑀𝑔+2‘ and it will be processed incorrectly into Mg[+0.5]

1.1. Key Features 9

https://pymatgen.org/pymatgen.core.html#pymatgen.core.ion.Ion

pyEQL Documentation, Release v0.8.0

Manually testing a formula

If you want to make sure pyEQL is understanding your formula correctly, you can manually test it as follows:

>>> from pyEQL.utils import standardize_formula
>>> standardize_formula(<your_formula>)
...

Formulas you will see when using Solution

When using the Solution class,

• When creating a Solution, you can enter chemical formulas in any format you prefer, as long as
standardize_formula can understand it (see manual testing).

• The keys (solute formulas) in Solution.components are standardized. So if you entered Na+ for sodium ion,
it will appear in components as Na[+1].

• However, the components attribute is a special dictionary that automatically standardizes formulas when ac-
cessed. So, you can still enter the formula however you want. For example, the following all access or modify
the same element in components:

Solution.components.get('Na+')
Solution.components["Na+1"]
Solution.components.update("Na[+]": 2)
Solution.components["Na[+1]"]

• Arguments to Solution.get_property can be entered in any format you prefer. When pyEQL queries the
database, it will automatically standardize the formula.

• Property data in the database is uniquely identified by the standardized ion formula (output of Ion.
from_formula(<formula>).reduced_formla, e.g. “Na[+1]” for sodium ion).

1.1.5 Property Database

pyEQL is distributed with a database of solute properties and model parameters needed to perform it’s calculations.
The database includes:

• Molecular weight, charge, and other chemical informatics information for any species

• Diffusion coefficients for 104 ions

• Pitzer model activity correction coefficients for 157 salts

• Pitzer model partial molar volume coefficients for 120 salts

• Jones-Dole “B” coefficients for 83 ions

• Hydrated and ionic radii for 23 ions

• Dielectric constant model parameters for 18 ions

• Partial molar volumes for 24 ions

pyEQL can automatically infer basic chemical informatics such as molecular weight and charge by passing a solute’s
formula to pymatgen.core.ion.Ion (See chemical formulas). For other physicochemical properties, it relies on data
compiled into the included database. A list of the data and species covered is available below

10 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

Format

The database is distributed as a .json file containing serialized Solute objects that define the schema for aggregated
property data (see below). By default, each instance of Solution loads this file as a maggma JSONStore and queries
data from it using the Store interface.

If desired, users can point a Solution instance to an alternate database by using the database keyword argument at
creation. The argument should contain either 1) the path to an alternate .json file (as a str) or 2) a maggma.Store
instance. The data in the file or Store must match the schema defined by Solute, with the field formula used as the
key field (unique identifier).

s1 = Solution(database='/path/to/my_database.json')

or

from maggma.core import JSONStore

db_store = JSONStore('/path/to/my_database.json', key='formula')
s1 = Solution(database=db_store)

The Solute class

pyEQL.Solute is a dataclass that defines a schema for organizing solute property data. You can think of the schema
as a structured dictionary: Solute defines the naming and organization of the keys. You can create a basic Solute
from just the solute’s formula as follows:

>>> from pyEQL.solute import Solute
>>> Solute.from_formula('Ti+2')
Solute(formula='Ti[+2]', charge=2, molecular_weight='47.867 g/mol', elements=['Ti'],␣
→˓chemsys='Ti', pmg_ion=Ion: Ti1 +2, formula_html='Ti⁺²', formula_latex='Ti$^
→˓{+2}$', formula_hill='Ti', formula_pretty='Ti^+2', oxi_state_guesses=({'Ti': 2.0},), n_
→˓atoms=1, n_elements=1, size={'radius_ionic': None, 'radius_hydrated': None, 'radius_vdw
→˓': None, 'molar_volume': None}, thermo={'G_hydration': None, 'G_formation': None},␣
→˓transport={'diffusion_coefficient': None}, model_parameters={'activity_pitzer': {'Beta0
→˓': None, 'Beta1': None, 'Beta2': None, 'Cphi': None, 'Max_C': None}, 'molar_volume_
→˓pitzer': {'Beta0': None, 'Beta1': None, 'Beta2': None, 'Cphi': None, 'V_o': None, 'Max_
→˓C': None}, 'viscosity_jones_dole': {'B': None}})

This method uses pymatgen to populate the Solute with basic chemical information like molecular weight. You can
access top-level keys in the schema via attribute, e.g.

>>> s.molecular_weight
'47.867 g/mol'
>>> s.charge
2.0

Other properties that are present in the schema, but not set, are None. For example, here we have not specified a
diffusion coefficient. If we inspect the transport attribute, we see

>>> s.transport
{'diffusion_coefficient': None}

You can convert a Solute into a regular dictionary using Solute.as_dict()

‘”

1.1. Key Features 11

https://materialsproject.github.io/maggma/
https://materialsproject.github.io/maggma/reference/stores/#maggma.stores.mongolike.JSONStore
https://materialsproject.github.io/maggma/concepts/#store
https://docs.python.org/3/library/dataclasses.html

pyEQL Documentation, Release v0.8.0

s.as_dict() {‘formula’: ‘Ti[+2]’, ‘charge’: 2, ‘molecular_weight’: ‘47.867 g/mol’,
‘elements’: [‘Ti’], ‘chemsys’: ‘Ti’, ‘pmg_ion’: Ion: Ti1 +2, ‘formula_html’:
‘Ti+2’, ‘formula_latex’: ‘Ti+2’, ‘formula_hill’: ‘Ti’, ‘formula_pretty’: ‘Ti^+2’,
‘oxi_state_guesses’: ({‘Ti’: 2.0},), ‘n_atoms’: 1, ‘n_elements’: 1, ‘size’: {‘ra-
dius_ionic’: None, ‘radius_hydrated’: None, ‘radius_vdw’: None, ‘molar_volume’:
None}, ‘thermo’: {‘G_hydration’: None, ‘G_formation’: None}, ‘transport’:
{‘diffusion_coefficient’: None}, ‘model_parameters’: {‘activity_pitzer’: {‘Beta0’:
None, ‘Beta1’: None, ‘Beta2’: None, ‘Cphi’: None, ‘Max_C’: None}, ‘mo-
lar_volume_pitzer’: {‘Beta0’: None, ‘Beta1’: None, ‘Beta2’: None, ‘Cphi’: None,
‘V_o’: None, ‘Max_C’: None}, ‘viscosity_jones_dole’: {‘B’: None}}} ‘”

Searching the database

Once you have a created a Solution, it will automatically search the database for needed parameters whenever it needs
to perform a calculation. For example, if you call get_transport_number, pyEQL will search the property database
for diffusion coefficient data to use in the calculation. No user action is needed.

If you want to search the database yourself, or to inspect the values that pyEQL uses for a particular parameter, you can
do so via the get_property method. First, create a Solution

>>> from pyEQL import Solution
>>> s1 = pyEQL.Solution

Next, call get_property with a solute name and the name of the property you need. Valid property names are any
key in the Solute schema. Nested keys can be separated by periods, e.g. “model_parameters.activity_pitzer”:

>>> s1.get_property('Mg+2', 'transport.diffusion_coefficient')
<Quantity(0.00705999997, 'centimeter ** 2 * liter * pascal * second / kilogram / meter␣
→˓** 2')>

If the property exists, it will be returned as a pint Quantity object, which you can convert to specific units if needed,
e.g.

>>> s1.get_property('Mg+2', 'transport.diffusion_coefficient').to('m**2/s')
<Quantity(7.05999997e-10, 'meter ** 2 / second')>

If the property does not exist in the database, None will be returned.

>>> s1.get_property('Mg+2', 'transport.randomproperty')
>>>

Although the database contains additional context about each and every property value, such as a citation, this infor-
mation is not currently exposed via the Solution interface. Richer methods for exploring and adding to the database
may be added in the future.

12 Chapter 1. Description

https://pint.readthedocs.io/en/stable/

pyEQL Documentation, Release v0.8.0

Species included

The database currently contains one or more physichochemical properties for each of the solutes listed below. More
detailed information about which properties are available for which solutes may be added in the future.

• Ac[+3]

• Ag(CN)2[-1]

• AgNO3(aq)

• Ag[+1]

• Ag[+2]

• Ag[+3]

• Al2(SO4)3(aq)

• Al[+3]

• AsO4[-3]

• Au(CN)2[-1]

• Au(CN)4[-1]

• Au[+1]

• Au[+2]

• Au[+3]

• B(H5C6)4[-1]

• B(OH)3(aq)

• B(OH)4[-1]

• BF4[-1]

• BO2[-1]

• Ba(ClO4)2(aq)

• Ba(NO3)2(aq)

• BaBr2(aq)

• BaC4O.3H2O(aq)

• BaCl2(aq)

• BaI2(aq)

• Ba[+2]

• BeSO4(aq)

• Be[+2]

• Bi[+3]

• BrO3[-1]

• Br[-0.33333333]

• Br[-1]

• C2N3[-1]

1.1. Key Features 13

pyEQL Documentation, Release v0.8.0

• CH3COO[-1]

• CNO[-1]

• CN[-1]

• CO3[-2]

• CSN[-1]

• CSeN[-1]

• Ca(ClO4)2(aq)

• Ca(NO3)2(aq)

• CaBr2(aq)

• CaCl2(aq)

• CaI2(aq)

• Ca[+2]

• Cd(ClO4)2(aq)

• Cd(NO2)2(aq)

• Cd(NO3)2(aq)

• CdSO4(aq)

• Cd[+2]

• CeCl3(aq)

• Ce[+3]

• Ce[+4]

• ClO2[-1]

• ClO3[-1]

• ClO4[-1]

• Cl[-1]

• Co(CN)6[-3]

• Co(H3N)6[-3]

• Co(NO3)2(aq)

• CoBr2(aq)

• CoCl2(aq)

• CoI2(aq)

• Co[+2]

• Co[+3]

• Cr(NO3)3(aq)

• CrCl3(aq)

• CrO4[-2]

• Cr[+2]

14 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

• Cr[+3]

• Cs2SO4(aq)

• CsBr(aq)

• CsCl(aq)

• CsF(aq)

• CsHC2O.1H2O(aq)

• CsI(aq)

• CsNO2(aq)

• CsNO3(aq)

• CsOH(aq)

• Cs[+1]

• Cu(NO3)2(aq)

• CuCl2(aq)

• CuSO4(aq)

• Cu[+1]

• Cu[+2]

• Cu[+3]

• Dy[+2]

• Dy[+3]

• Er[+2]

• Er[+3]

• Eu(NO3)3(aq)

• EuCl3(aq)

• Eu[+2]

• Eu[+3]

• F[-1]

• Fe(CN)6[-3]

• Fe(CN)6[-4]

• FeCl2(aq)

• FeCl3(aq)

• Fe[+2]

• Fe[+3]

• Ga[+3]

• GdCl3(aq)

• Gd[+3]

• Ge[+2]

1.1. Key Features 15

pyEQL Documentation, Release v0.8.0

• H2CO3(aq)

• H2O(aq)

• H2SNO3[-1]

• H2SO4(aq)

• H3O[+1]

• H4BrN(aq)

• H4IN(aq)

• H4N2O3(aq)

• H4NCl(aq)

• H4NClO4(aq)

• H4N[+1]

• H4SNO4(aq)

• H5C6O7[-3]

• H5N2[+1]

• H8S(NO2)2(aq)

• HBr(aq)

• HCO2[-1]

• HCO3[-1]

• HCl(aq)

• HClO4(aq)

• HF2[-1]

• HI(aq)

• HNO3(aq)

• HO2[-1]

• HOsO5[-1]

• HSO3[-1]

• HSO4[-1]

• HS[-1]

• HSeO3[-1]

• H[+1]

• Hf[+4]

• Hg[+2]

• Ho[+2]

• Ho[+3]

• IO3[-1]

• IO4[-1]

16 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

• I[-1]

• In[+1]

• In[+2]

• In[+3]

• IrO4[-1]

• Ir[+3]

• K2CO3(aq)

• K2PHO4(aq)

• K2SO4(aq)

• K3Fe(CN)6(aq)

• K3PO4(aq)

• K4Fe(CN)6(aq)

• KBr(aq)

• KBrO3(aq)

• KCSN(aq)

• KCl(aq)

• KClO3(aq)

• KClO4(aq)

• KCrO4(aq)

• KF(aq)

• KHC2O.1H2O(aq)

• KHCO3(aq)

• KI(aq)

• KNO2(aq)

• KNO3(aq)

• KOH(aq)

• KPO3.1H2O(aq)

• K[+1]

• La(NO3)3(aq)

• LaCl3(aq)

• La[+3]

• Li2SO4(aq)

• LiBr(aq)

• LiCl(aq)

• LiClO4(aq)

• LiHC2O.1H2O(aq)

1.1. Key Features 17

pyEQL Documentation, Release v0.8.0

• LiI(aq)

• LiNO2(aq)

• LiNO3(aq)

• LiOH(aq)

• Li[+1]

• Lu[+3]

• Mg(ClO4)2(aq)

• Mg(NO3)2(aq)

• MgBr2(aq)

• MgC4O.3H2O(aq)

• MgCl2(aq)

• MgI2(aq)

• MgSO4(aq)

• Mg[+2]

• MnCl2(aq)

• MnO4[-1]

• MnSO4(aq)

• Mn[+2]

• Mn[+3]

• MoO4[-2]

• Mo[+3]

• NO2[-1]

• NO3[-1]

• N[-0.33333333]

• Na2CO3(aq)

• Na2PHO4(aq)

• Na2S2O3(aq)

• Na2SO4(aq)

• Na3PO4(aq)

• NaBr(aq)

• NaBrO3(aq)

• NaCSN(aq)

• NaCl(aq)

• NaClO4(aq)

• NaCrO4(aq)

• NaF(aq)

18 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

• NaHC2O.1H2O(aq)

• NaHC3.2H2O(aq)

• NaHCO2(aq)

• NaHCO3(aq)

• NaI(aq)

• NaNO2(aq)

• NaNO3(aq)

• NaOH(aq)

• NaPO3.1H2O(aq)

• Na[+1]

• Nb[+3]

• Nd(NO3)3(aq)

• NdCl3(aq)

• Nd[+2]

• Nd[+3]

• Ni(NO3)2(aq)

• NiCl2(aq)

• NiSO4(aq)

• Ni[+2]

• Ni[+3]

• Np[+3]

• Np[+4]

• OH[-1]

• Os[+3]

• P(HO2)2[-1]

• P(OH)2[-1]

• P2O7[-4]

• P3O10[-5]

• PF6[-1]

• PH9(NO2)2(aq)

• PHO4[-2]

• PO3F[-2]

• PO3[-1]

• PO4[-3]

• Pa[+3]

• Pb(ClO4)2(aq)

1.1. Key Features 19

pyEQL Documentation, Release v0.8.0

• Pb(NO3)2(aq)

• Pb[+2]

• Pd[+2]

• Pm[+2]

• Pm[+3]

• Po[+2]

• PrCl3(aq)

• Pr[+2]

• Pr[+3]

• Pt[+2]

• Pu[+2]

• Pu[+4]

• Ra[+2]

• Rb2SO4(aq)

• RbBr(aq)

• RbCl(aq)

• RbF(aq)

• RbHC2O.1H2O(aq)

• RbI(aq)

• RbNO2(aq)

• RbNO3(aq)

• RbOH(aq)

• Rb[+1]

• ReO4[-1]

• Re[+1]

• Re[+3]

• Re[-1]

• Rh[+3]

• Ru[+2]

• Ru[+3]

• S2O3[-2]

• SO2[-1]

• SO3[-1]

• SO3[-2]

• SO4[-1]

• SO4[-2]

20 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

• S[-2]

• Sb(HO2)2[-1]

• Sb(OH)6[-1]

• ScCl3(aq)

• Sc[+2]

• Sc[+3]

• SeO3[-1]

• SeO4[-1]

• SeO4[-2]

• SiF6[-2]

• SmCl3(aq)

• Sm[+2]

• Sm[+3]

• Sn[+2]

• Sn[+4]

• Sr(ClO4)2(aq)

• Sr(NO3)2(aq)

• SrBr2(aq)

• SrCl2(aq)

• SrI2(aq)

• Sr[+2]

• Ta[+3]

• Tb[+3]

• TcO4[-1]

• Tc[+2]

• Tc[+3]

• Th(NO3)4(aq)

• Th[+4]

• Ti[+2]

• Ti[+3]

• Tl(ClO4)3(aq)

• Tl(NO2)3(aq)

• Tl(NO3)3(aq)

• TlH(C3O)2.4H2O(aq)

• Tl[+1]

• Tl[+3]

1.1. Key Features 21

pyEQL Documentation, Release v0.8.0

• Tm[+2]

• Tm[+3]

• U(ClO)2(aq)

• U(ClO5)2(aq)

• U(NO4)2(aq)

• UO2[+1]

• UO2[+2]

• USO6(aq)

• U[+3]

• U[+4]

• VO2[+1]

• V[+2]

• V[+3]

• WO4[-1]

• WO4[-2]

• W[+3]

• YCl3(aq)

• YNO3(aq)

• Y[+3]

• Yb[+2]

• Yb[+3]

• Zn(ClO4)2(aq)

• Zn(NO3)2(aq)

• ZnBr2(aq)

• ZnCl2(aq)

• ZnI2(aq)

• ZnSO4(aq)

• Zn[+2]

• Zr[+4]

22 Chapter 1. Description

pyEQL Documentation, Release v0.8.0

1.1.6 Contributing to pyEQL

Reporting Issues

You can help the project simply by using pyEQL and comparing the output to experimental data and/or other models
and tools. If you encounter any bugs, packaging issues, feature requests, comments, or questions, please report them
using the issue tracker on github.

Contributing Code

To contribute bug fixes, documentation enhancements, or new code, please fork pyEQL and send us a pull request. It’s
not as hard as it sounds! Beginning with version 0.6.0, we follow the GitHub flow workflow model.

Hacking pyEQL, step by step

1. Fork the pyEQL repository on Github

2. Clone your repository to a directory of your choice:

git clone https://github.com/<username>/pyEQL

3. Install the package and the test dependencies by running the following command from the repository directory:

pip install -e '.[testing]``

4. Create a branch for your work. Preferably, start your branch name with “feature-”, “fix-”, or “doc-” depending
on whether you are contributing bug fixes, documentation or a new feature, e.g. prefix your branch with “fix-”
or “doc-” as appropriate:

git checkout -b mybranch

or

git checkout -b doc-mydoc

or

git checkout -b feature-myfeature

5. Make changes to the code until you’re satisfied.

6. Push your work back to Github:

git push origin feature-myfeature

7. Create a pull request with your changes. See this tutorial for instructions.

1.1. Key Features 23

https://github.com/rkingsbury/pyEQL/issues
https://github.com/rkingsbury/pyeql
https://docs.github.com/en/get-started/quickstart/github-flow
https://help.github.com/articles/fork-a-repo/
https://yangsu.github.io/pull-request-tutorial

pyEQL Documentation, Release v0.8.0

Guidelines

Please abide by the following guidelines when contributing code to pyEQL:

• All changes you make to quacc should be accompanied by unit tests and should not break existing tests. To run
the full test suite, run pytest tests/ from the repository directory.

• Code coverage should be maintained or increase. Each PR will report code coverage after the tests pass, but you
can check locally using pytest-cov, by running pytest --cov tests/

• All code should include type hints and have internally consistent documentation for the inputs and outputs.

• Use Google style docstrings

• Lint your code with ruff by running ruff check --fix src/ from the repo directory. Alternatively, you
can install the pre-commit hooks by running pre-commit install from the repository directory. This will
prevent committing new changes until all linting errors are fixed.

• Update the CHANGELOG.md file.

• Ask questions and be open to feedback!

Documentation

Improvements to the documentation are most welcome! Our documentation system uses sphinx with the Materials for
Sphinx theme. To edit the documentation locally, run tox -e autodocs from the repository root directory. This will
serve the documents to http://localhost:8000/ so you can view them in your web browser. When you make changes to
the files in the docs/ directory, the documentation will automatically rebuild and update in your browser (you might
have to refresh the page to see changes).

Changelog

We keep a CHANGELOG.md file in the base directory of the repository. Before submitting your PR, be sure to update the
CHANGELOG.md file under the “Unreleased” section with a brief description of your changes. Our CHANGELOG.md file
lossely follows the Keep a Changelog format, beginning with v0.6.0.

1.1.7 Functions Module

pyEQL functions that take Solution objects as inputs or return Solution objects.

copyright
2013-2023 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

pyEQL.functions.autogenerate(solution='')
This method provides a quick way to create Solution objects representing commonly-encountered solutions, such
as seawater, rainwater, and wastewater.

Parameters
solution (str) – String representing the desired solution Valid entries are ‘seawater’, ‘rainwa-
ter’, ‘wastewater’,and ‘urine’

Returns
A pyEQL Solution object.

24 Chapter 1. Description

https://pytest-cov.readthedocs.io/en/latest/
https://github.com/astral-sh/ruff
https://bashtage.github.io/sphinx-material/
https://bashtage.github.io/sphinx-material/
http://localhost:8000/
https://keepachangelog.com/en/1.0.0/
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.8.0

Return type
Solution

Notes

The following sections explain the different solution options:

• ‘’ - empty solution, equivalent to pyEQL.Solution()

• ‘rainwater’ - pure water in equilibrium with atmospheric CO2 at pH 6

• ‘seawater’ or ‘SW’- Standard Seawater. See Table 4 of the Reference for Composition [1]_

• ‘wastewater’ or ‘WW’ - medium strength domestic wastewater. See Table 3-18 of [2]_

• ‘urine’ - typical human urine. See Table 3-15 of [2]_

• ‘normal saline’ or ‘NS’ - normal saline solution used in medicine [3]_

• ‘Ringers lacatate’ or ‘RL’ - Ringer’s lactate solution used in medicine [4]_

References:

pyEQL.functions.donnan_eql(solution, fixed_charge)
Return a solution object in equilibrium with fixed_charge.

Parameters

• solution (Solution object) – The external solution to be brought into equilibrium with
the fixed charges

• fixed_charge (str quantity) – String representing the concentration of fixed charges,
including sign. May be specified in mol/L or mol/kg units. e.g. ‘1 mol/kg’

Returns
A solution that has established Donnan equilibrium with the external (input) Solution

Return type
Solution

Notes

The general equation representing the equilibrium between an external electrolyte solution and an ion-exchange
medium containing fixed charges is

In addition, electroneutrality must prevail within the membrane phase:

𝐶+𝑧+ + �̄� + 𝐶−𝑧− = 0

Where 𝐶 represents concentration and 𝑋 is the fixed charge concentration in the membrane or ion exchange phase.

This function solves these two equations simultaneously to arrive at the concentrations of the cation and anion in the
membrane phase. It returns a solution equal to the input solution except that the concentrations of the predominant
cation and anion have been adjusted according to this equilibrium.

NOTE that this treatment is only capable of equilibrating a single salt. This salt is identified by the get_salt() method.

1.1. Key Features 25

pyEQL Documentation, Release v0.8.0

References

Strathmann, Heiner, ed. Membrane Science and Technology vol. 9, 2004. Chapter 2, p. 51.
http://dx.doi.org/10.1016/S0927-5193(04)80033-0

See Also:

get_salt()

pyEQL.functions.entropy_mix(Solution1, Solution2)
Return the ideal mixing entropy associated with mixing two solutions.

Parameters

• Solution1 (Solution objects) – The two solutions to be mixed.

• Solution2 (Solution objects) – The two solutions to be mixed.

Returns
The ideal mixing entropy associated with complete mixing of the Solutions, in Joules.

Return type
Quantity

Notes

The ideal entropy of mixing is calculated as follows

𝐷𝑒𝑙𝑡𝑎𝑚𝑖𝑥𝑆 =

𝑠𝑢𝑚𝑖(𝑛𝑐 + 𝑛𝑑)𝑅𝑇

𝑙𝑛𝑥𝑏−
𝑠𝑢𝑚𝑖𝑛𝑐𝑅𝑇

𝑙𝑛𝑥𝑐−
𝑠𝑢𝑚𝑖𝑛𝑑𝑅𝑇

𝑙𝑛𝑥𝑑

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, and subscripts 𝑏, 𝑐, and 𝑑 refer to
the concentrated, dilute, and blended Solutions, respectively.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a three
component solution (cation, anion, and water).

References

Koga, Yoshikata, 2007. *Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.* Elsevier, 2007, pp. 23-37.

pyEQL.functions.gibbs_mix(Solution1, Solution2)
Return the Gibbs energy change associated with mixing two solutions.

Parameters

• Solution1 (Solution objects) – The two solutions to be mixed.

26 Chapter 1. Description

http://dx.doi.org/10.1016/S0927-5193(04)80033-0

pyEQL Documentation, Release v0.8.0

• Solution2 (Solution objects) – The two solutions to be mixed.

Returns
The change in Gibbs energy associated with complete mixing of the Solutions, in Joules.

Return type
Quantity

Notes

The Gibbs energy of mixing is calculated as follows

𝐷𝑒𝑙𝑡𝑎𝑚𝑖𝑥𝐺 =

𝑠𝑢𝑚𝑖(𝑛𝑐 + 𝑛𝑑)𝑅𝑇

𝑙𝑛𝑎𝑏−
𝑠𝑢𝑚𝑖𝑛𝑐𝑅𝑇

𝑙𝑛𝑎𝑐−
𝑠𝑢𝑚𝑖𝑛𝑑𝑅𝑇

𝑙𝑛𝑎𝑑

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, and subscripts 𝑏, 𝑐, and 𝑑 refer to
the concentrated, dilute, and blended Solutions, respectively.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a three
component solution (cation, anion, and water).

References

Koga, Yoshikata, 2007. *Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.* Elsevier, 2007, pp. 23-37.

pyEQL.functions.mix(s1, s2)
Mix two solutions together.

Parameters

• s1 – The two solutions to be mixed.

• s2 – The two solutions to be mixed.

Returns
A Solution object that represents the result of mixing s1 and s2.

Notes

The initial volume of the mixed solution is set as the sum of the volumes of s1 and s2. The pressure and tem-
perature are volume-weighted averages. The pH and pE values are currently APPROXIMATE because they are
calculated assuming H+ and e- mix conservatively (i.e., the mixing process does not incorporate any equilibration
reactions or buffering). Such support is planned in a future release.

1.1. Key Features 27

pyEQL Documentation, Release v0.8.0

1.1.8 Internal module reference

These internal modules are used by Solution but typically are not directly accessed by the user.

Salt analysis module

Activity Correction module

Speciation Engines module

28 Chapter 1. Description

PYTHON MODULE INDEX

p
pyEQL.functions, 24

29

pyEQL Documentation, Release v0.8.0

30 Python Module Index

INDEX

A
autogenerate() (in module pyEQL.functions), 24

D
donnan_eql() (in module pyEQL.functions), 25

E
entropy_mix() (in module pyEQL.functions), 26

G
gibbs_mix() (in module pyEQL.functions), 26

M
mix() (in module pyEQL.functions), 27
module

pyEQL.functions, 24

P
pyEQL.functions

module, 24

31

	Description
	Key Features
	Installation
	Use a conda environment
	pip install
	Other dependencies
	Installing the development branch
	Manually install via Git

	Tutorial
	Creating a Solution Object
	Retrieving Solution Properties
	Bulk Solution Properties
	Individual Solute Properties

	Units-Aware Calculations using pint
	Using pyEQL in your projects

	The Solution Class
	Creating a solution
	Class reference

	Chemical Formulas
	How to Enter Valid Chemical Formulas
	Manually testing a formula
	Formulas you will see when using Solution

	Property Database
	Format
	The Solute class
	Searching the database
	Species included

	Contributing to pyEQL
	Reporting Issues
	Contributing Code
	Hacking pyEQL, step by step

	Guidelines
	Documentation
	Changelog

	Functions Module
	References:
	See Also:

	Internal module reference
	Salt analysis module
	Activity Correction module
	Speciation Engines module

	Python Module Index
	Index

