
pyEQL Documentation
Release v0.6.0

Ryan Kingsbury

Aug 16, 2023

CONTENTS

1 Description 3
1.1 Key Features . 3

Bibliography 63

Python Module Index 65

Index 67

i

ii

pyEQL Documentation, Release v0.6.0

CONTENTS 1

pyEQL Documentation, Release v0.6.0

2 CONTENTS

CHAPTER

ONE

DESCRIPTION

pyEQL is a Python library that provides tools for modeling aqueous electrolyte solutions. It allows the user to manipu-
late solutions as Python objects, providing methods to populate them with solutes, calculate species-specific properties
(such as activity and diffusion coefficients), and retrieve bulk properties (such as density, conductivity, or volume).

pyeql-demo.png

pyEQL is designed to be customizable and easy to integrate into projects that require modeling of chemical ther-
modyanmics of aqueous solutions. It aspires to provide a flexible, extensible framework for the user, with a high level
of transparency about data sources and calculation methods.

pyEQL runs on Python 3.8+ and is licensed under LGPL.

1.1 Key Features

• Build accurate solution properties using a minimum of inputs. Just specify the identity and quantity of a solute
and pyEQL will do the rest.

• “Graceful Decay” from more sophisticated, data-intensive modeling approaches to simpler, less accurate ones
depending on the amount of data supplied.

• Not limited to dilute solutions. pyEQL contains out of the box support for the Pitzer Model and other methods
for modeling concentrated solutions.

• Extensible database system that allows one to supplement pyEQL’s default parameters with project-specific data.

• Units-aware calculations (by means of the pint library)

Contents:

3

https://github.com/hgrecco/pint

pyEQL Documentation, Release v0.6.0

1.1.1 Installation

Use a conda environment

We highly recommend installing python in an isolated environment using conda (or its speedier, backward-compatible
successor, mamba). In particular, we recommend the miniforge or mambaforge distributions of Python, which are
lightweight distributions of conda that automatically activate the conda-forge channel for up-to-date scientific pack-
ages.

Note: If you are on a Windows machine, we recommend you install the Windows Subsystem for Linux (WSL) and set
up your conda environments inside the WSL environment.

After installing conda / mamba, follow their instructions to create an environment. The steps should be similar to the
following:

1. Open your terminal (or “Anaconda prompt” or “Miniforge prompt” on Windows)

2. Pick a name for your environment (note: you can create many environments if you want)

3. type conda create -n <name-you-picked> python=3.10 (if you install miniforge) or mamba create -n
<name-you-picked> python=3.10 (if you installed mambaforge) and press enter

4. After the environment is installed, type conda activate <name-you-picked> / mamba activate
<name-you-picked> and press enter

pip install

Once Python is installed and your environment is activated you can install pyEQL from PyPi by typing the following
command:

pip install pyEQL

This should automatically pull in the required dependencies as well.

Important: If you are NOT using a conda environment, may have to run ‘pip3’ rather than ‘pip’. This will be the
case if Python 2.x and Python 3.x are installed side-by-side on your system. You can tell if this is the case by typing
the following command:

$ python --version
Python 2.7.12

This means Python 2.x is installed. If you run ‘pip install’ it will point to the Python 2.7 installation, but pyEQL only
works on Python 3. So, try this:

$ python3 --version
Python 3.9.7

To get to Python 3.x, you have to type ‘python3’. In this case, you would run ‘pip3 install’

4 Chapter 1. Description

https://docs.conda.io/en/latest/
https://mamba.readthedocs.io/en/latest/
https://github.com/conda-forge/miniforge#miniforge3
https://github.com/conda-forge/miniforge#mambaforge
https://learn.microsoft.com/en-us/windows/wsl/install
https://pypi.python.org/pypi

pyEQL Documentation, Release v0.6.0

Other dependencies

pyEQL also requires the following packages:

• pint - for automated unit conversion

• pymatgen - used to interpret chemical formulas

• iapws - used to calculate the properties of water

• monty - used for saving and loading Solution objects to files

• maggma - used by the internal property database

• scipy

• numpy

If you use pip to install pyEQL (recommended), they should be installed automatically.

Installing the development branch

If you want to use the bleeding edge (and potentially unstable!) development branch instead of the latest stable release,
you can substitute the following for the above ‘pip install’ command:

pip install git+https://github.com/rkingsbury/pyEQL.git@develop

Manually install via Git

Simply navigate to a directory of your choice on your computer and clone the repository by executing the following
terminal command:

git clone https://github.com/rkingsbury/pyEQL

Then install by executing:

pip install -e pyEQL

Note: You may have to run ‘pip3’ rather than ‘pip’. See the note in the pip install section.

1.1.2 Tutorial

pyEQL creates a new type (Solution class) to represent a chemical solution. It also comes pre-loaded with a database
of diffusion coefficients, activity correction parameters, and other data on a variety of common electrolytes. Virtually
all of the user-facing functions in pyEQL are accessed through the Solution class.

1.1. Key Features 5

https://github.com/hgrecco/pint
https://github.com/materialsproject/pymatgen/
https://github.com/jjgomera/iapws/
https://github.com/materialsvirtuallab/monty
https://materialsproject.github.io/maggma/
http://scipy.org/
http://numpy.org/

pyEQL Documentation, Release v0.6.0

Creating a Solution Object

Create a Solution object by invoking the Solution class:

>>> import pyEQL
>>> s1 = pyEQL.Solution()
>>> s1
<pyEQL.pyEQL.Solution at 0x7f9d188309b0>

If no arguments are specified, pyEQL creates a 1-L solution of water at pH 7 and 25 degC.

More usefully, you can specify solutes and bulk properties:

>>> s2 = pyEQL.Solution({'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'}, pH=8, temperature =
→˓'20 degC', volume='8 L')

Retrieving Solution Properties

Bulk Solution Properties

pyEQL provides a variety of methods to calculate or look up bulk properties like temperature, ionic strength, conduc-
tivity, and density.

>>> s2.volume
8.071524653929277 liter
>>> s2.density
1.0182802742389558 kilogram/liter
>>> s2.conductivity
4.083570230022633 siemens/meter
>>> s2.ionic_strength
0.500000505903012 mole/kilogram

Individual Solute Properties

You can also retrieve properties for individual solutes (or the solvent, water)

>>> s2.get_amount('Na+','mol/L')
0.4946847550064916 mole/liter
>>> s2.get_activity_coefficient('Na+)
0.6838526233869155
>>> s2.get_activity('Na+')
0.3419263116934578
>>> s2.get_property('Na+','transport.diffusion_coefficient')
1.1206048116287536e-05 centimeter2/second

6 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

Units-Aware Calculations using pint

pyEQL uses pint to perform units-aware calculations. The pint library creates Quantity objects that contain both a
magnitude and a unit.

>>> from pyEQL import unit
>>> test_qty = pyEQL.unit('1 kg/m**3')
1.0 kilogram/meter3

Many pyEQL methods require physical quantities to be input as strings, then these methods return pint Quantity
objects. A string quantity must contain both a magnitude and a unit (e.g. ‘0.5 mol/L’). In general, pint recognizes
common abbreviations and SI prefixes. Compound units must follow Python math syntax (e.g. cm**2 not cm2).

Pint Quantity objects have several useful attributes. They can be converted to strings:

>>> str(test_qty)
'1.0 kg/m**3'

the magnitude, units, or dimensionality can be retrieved via attributes:

>>> test_qty.magnitude
1.0
>>> test_qty.units
<UnitsContainer({'kilogram': 1.0, 'meter': -3.0})>
>>> test_qty.dimensionality
<UnitsContainer({'[length]': -3.0, '[mass]': 1.0})>

See the pint documentation for more details on creating and manipulating Quantity objects.

Using pyEQL in your projects

To access pyEQL’s main features in your project all that is needed is an import statement:

>>> import pyEQL

In order to directly create Quantity objects, you need to explicitly import the unit module:

>>> from pyEQL import unit
>>> test_qty = unit('1 kg/m**3')
1.0 kilogram/meter3

Warning: if you use pyEQL in conjunction with another module that also uses pint for units-aware calculations,
you must convert all Quantity objects to strings before passing them to the other module, as pint cannot perform
mathematical operations on units that belong to different “registries.” See the pint documentation for more details.

1.1. Key Features 7

https://github.com/hgrecco/pint
http://pint.readthedocs.io/
http://pint.readthedocs.io/

pyEQL Documentation, Release v0.6.0

1.1.3 The Solution Class

The Solution class defines a pythonic interface for creating, modifying, and estimating properties of electrolyte
solutions. It is the core feature of pyEQL and the primary user-facing class.

Creating a solution

A Solution created with no arguments will default to pure water at pH=7, T=25 degrees Celsius, and 1 atm pressure.

>>> from pyEQL import Solution
>>> s1 = Solution()
>>> s1.pH
6.998877352386266

Alternatively, you can use the autogenerate() function to easily create common solutions like seawater:

>>> from pyEQL.functions import autogenerate
>>> s2 = autogenerate('seawater')
<pyEQL.solution.Solution object at 0x7f057de6b0a0>

You can inspect the solutes present in the solution via the components attribute. This comprises a dictionary of solute
formula: moles, where ‘moles’ is the number of moles of that solute in the Solution. Note that the solvent (water) is
present in components, too.

>>> s2.components
{'H2O': 55.34455401423017,
'H+': 7.943282347242822e-09,
'OH-': 8.207436858780226e-06,
'Na+': 0.46758273714962967,
'Mg+2': 0.052661180523467986,
'Ca+2': 0.010251594148212318,
'K+': 0.010177468379526856,
'Sr+2': 9.046483353663286e-05,
'Cl-': 0.54425785619973,
'SO4-2': 0.028151873448454025,
'HCO3-': 0.001712651176926199,
'Br-': 0.0008395244921424563,
'CO3-2': 0.00023825904349479546,
'B(OH)4': 0.0001005389715937341,
'F-': 6.822478260456777e-05,
'B(OH)3': 0.0003134669156396757,
'CO2': 9.515218476861175e-06
}

To get the amount of a specific solute, use get_amount() and specify the units you want:

>>> s2.get_amount('Na+', 'g/L')
<Quantity(10.6636539, 'gram / liter')>

Finally, you can manually create a solution with any list of solutes, temperature, pressure, etc. that you need:

>>> from pyEQL import Solution
>>> s1 = Solution(solutes={'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'},

(continues on next page)

8 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

(continued from previous page)

pH=8,
temperature = '20 degC',
volume='8 L'
)

Class reference

The remainder of this page contains detailed information on each of the methods, attributes, and properties in
Solution. Use the sidebar on the right for easier navigation.

class pyEQL.Solution(solutes: List[List[str]] | Dict[str, str] | None = None, volume: str | None = None,
temperature: str = '298.15 K', pressure: str = '1 atm', pH: float = 7, pE: float = 8.5,
solvent: str | list = 'H2O', engine: Literal['native', 'ideal'] = 'native', database: str | Path |
Store | None = None)

Class representing the properties of a solution. Instances of this class contain information about the solutes,
solvent, and bulk properties.

__init__(solutes: List[List[str]] | Dict[str, str] | None = None, volume: str | None = None, temperature: str
= '298.15 K', pressure: str = '1 atm', pH: float = 7, pE: float = 8.5, solvent: str | list = 'H2O',
engine: Literal['native', 'ideal'] = 'native', database: str | Path | Store | None = None)

Parameters

• solutes – dict, optional. Keys must be the chemical formula, while values must be str
Quantity representing the amount. For example:

{“Na+”: “0.1 mol/L”, “Cl-”: “0.1 mol/L”}

Note that an older “list of lists” syntax is also supported; however this will be deprecated in
the future and is no longer recommended. The equivalent list syntax for the above example
is

[[“Na+”, “0.1 mol/L”], [“Cl-”, “0.1 mol/L”]]

Defaults to empty (pure solvent) if omitted

• volume – str, optional Volume of the solvent, including the unit. Defaults to ‘1 L’ if omitted.
Note that the total solution volume will be computed using partial molar volumes of the
respective solutes as they are added to the solution.

• temperature – str, optional The solution temperature, including the unit. Defaults to ‘25
degC’ if omitted.

• pressure – Quantity, optional The ambient pressure of the solution, including the unit.
Defaults to ‘1 atm’ if omitted.

• pH – number, optional Negative log of H+ activity. If omitted, the solution will be initialized
to pH 7 (neutral) with appropriate quantities of H+ and OH- ions

• pe – the pE value (redox potential) of the solution. Lower values = more reducing, higher
values = more oxidizing. At pH 7, water is stable between approximately -7 to +14. The
default value corresponds to a pE value typical of natural waters in equilibrium with the
atmosphere.

• solvent – Formula of the solvent. Solvents other than water are not supported at this time.

• engine –

1.1. Key Features 9

https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/typing.html#typing.List
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/constants.html#None

pyEQL Documentation, Release v0.6.0

• database – path to a .json file (str or Path) or maggma Store instance that contains serial-
ized SoluteDocs. None (default) will use the built-in pyEQL database.

Examples

>>> s1 = pyEQL.Solution([['Na+','1 mol/L'],['Cl-','1 mol/L']],temperature='20␣
→˓degC',volume='500 mL')
>>> print(s1)
Components:
['H2O', 'Cl-', 'H+', 'OH-', 'Na+']
Volume: 0.5 l
Density: 1.0383030844030992 kg/l

property mass: Quantity

Return the total mass of the solution.

The mass is calculated each time this method is called. :param None:

Returns
Quantity

Return type
the mass of the solution, in kg

property solvent_mass

Return the mass of the solvent.

This property is used whenever mol/kg (or similar) concentrations are requested by get_amount()

Returns
Quantity

Return type
the mass of the solvent, in kg

See also:

get_amount()

property volume: Quantity

Return the volume of the solution.

Returns:

Quantity: the volume of the solution, in L

property temperature: Quantity

Return the temperature of the solution in Kelvin.

property pressure: Quantity

Return the hydrostatic pressure of the solution in atm.

property pH: Quantity

Return the pH of the solution.

10 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

p(solute, activity=True)
Return the negative log of the activity of solute.

Generally used for expressing concentration of hydrogen ions (pH)

Parameters

• solute (str) – String representing the formula of the solute

• activity (bool, optional) – If False, the function will use the molar concentration
rather than the activity to calculate p. Defaults to True.

Returns
The negative log10 of the activity (or molar concentration if activity = False) of the solute.

Return type
Quantity

property density: Quantity

Return the density of the solution.

Density is calculated from the mass and volume each time this method is called.

Returns
Quantity

Return type
The density of the solution.

property dielectric_constant: Quantity

Returns the dielectric constant of the solution.

Parameters
None –

Returns
Quantity

Return type
the dielectric constant of the solution, dimensionless.

Notes

Implements the following equation as given by Zuber et al.

𝜖 = 𝜖𝑠𝑜𝑙𝑣𝑒𝑛𝑡
1 +

∑︀
𝑖 𝛼𝑖𝑥𝑖

where 𝛼𝑖 is a coefficient specific to the solvent and ion, and 𝑥𝑖 is the mole fraction of the ion in solution.

References

.A. Zuber, L. Cardozo-Filho, V.F. Cabral, R.F. Checoni, M. Castier, An empirical equation for the dielec-
tric constant in aqueous and nonaqueous electrolyte mixtures, Fluid Phase Equilib. 376 (2014) 116-123.
doi:10.1016/j.fluid.2014.05.037.

property viscosity_dynamic: Quantity

Return the dynamic (absolute) viscosity of the solution.

Calculated from the kinematic viscosity

1.1. Key Features 11

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#bool

pyEQL Documentation, Release v0.6.0

See Also:

viscosity_kinematic

property viscosity_kinematic

Return the kinematic viscosity of the solution.

Notes

The calculation is based on a model derived from the Eyring equation and presented in

ln 𝜈 = ln
𝜈𝑤𝑀𝑊𝑤∑︀
𝑖 𝑥𝑖𝑀𝑊𝑖

+ 15𝑥2
+ + 𝑥3

+𝛿𝐺
*
123 + 3𝑥+𝛿𝐺

*
23(1− 0.05𝑥+)

Where:

𝛿𝐺*
123 = 𝑎𝑜 + 𝑎1(𝑇)

0.75

𝛿𝐺*
23 = 𝑏𝑜 + 𝑏1(𝑇)

0.5

In which 𝜈 is the kinematic viscosity, MW is the molecular weight, 𝑥+ is the mole fraction of cations, and
𝑇 is the temperature in degrees C.

The a and b fitting parameters for a variety of common salts are included in the database.

References

Vásquez-Castillo, G.; Iglesias-Silva, G. a.; Hall, K. R. An extension of the McAllister model to correlate
kinematic viscosity of electrolyte solutions. Fluid Phase Equilib. 2013, 358, 44-49.

See Also:

viscosity_dynamic()

property conductivity

Compute the electrical conductivity of the solution.

Parameters
None –

Returns
The electrical conductivity of the solution in Siemens / meter.

Return type
Quantity

Notes

Conductivity is calculated by summing the molar conductivities of the respective solutes, but they are
activity-corrected and adjusted using an empricial exponent. This approach is used in PHREEQC and
Aqion models [aq] [hc]

𝐸𝐶 =
𝐹 2

𝑅𝑇

∑︁
𝑖

𝐷𝑖𝑧
2
𝑖 𝛾

𝛼
𝑖 𝑚𝑖

12 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

Where:

𝛼 =

⎧⎨⎩
0.6√
|𝑧𝑖|

𝐼 < 0.36|𝑧𝑖|
√
𝐼

|𝑧𝑖|

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note: PHREEQC uses the molal rather than molar concentration according to http://wwwbrr.cr.usgs.gov/
projects/GWC_coupled/phreeqc/phreeqc3-html/phreeqc3-43.htm

References

See also:

ionic_strength get_molar_conductivity() get_activity_coefficient()

property ionic_strength: Quantity

Return the ionic strength of the solution.

Return the ionic strength of the solution, calculated as 1/2 * sum (molality * charge ^2) over all the ions.

Molal (mol/kg) scale concentrations are used for compatibility with the activity correction formulas.

Returns

• Quantity – The ionic strength of the parent solution, mol/kg.

• See Also

• ——–

• get_activity()

• get_water_activity()

Notes

The ionic strength is calculated according to:

𝐼 =
∑︁
𝑖

𝑚𝑖𝑧
2
𝑖

Where 𝑚𝑖 is the molal concentration and 𝑧𝑖 is the charge on species i.

Examples:

>>> s1 = pyEQL.Solution([['Na+','0.2 mol/kg'],['Cl-','0.2 mol/kg']])
>>> s1.ionic_strength
<Quantity(0.20000010029672785, 'mole / kilogram')>

>>> s1 = pyEQL.Solution([['Mg+2','0.3 mol/kg'],['Na+','0.1 mol/kg'],['Cl-','0.7␣
→˓mol/kg']],temperature='30 degC')
>>> s1.ionic_strength
<Quantity(1.0000001004383303, 'mole / kilogram')>

1.1. Key Features 13

http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/phreeqc3-html/phreeqc3-43.htm
http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/phreeqc3-html/phreeqc3-43.htm

pyEQL Documentation, Release v0.6.0

property charge_balance: float

Return the charge balance of the solution.

Return the charge balance of the solution. The charge balance represents the net electric charge on the
solution and SHOULD equal zero at all times, but due to numerical errors will usually have a small nonzero
value. It is calculated according to:

𝐶𝐵 =
∑︁
𝑖

𝑛𝑖𝑧𝑖

where 𝑛𝑖 is the number of moles, and 𝑧𝑖 is the charge on species i.

Returns
The charge balance of the solution, in equivalents (mol of charge).

Return type
float

property alkalinity

Return the alkalinity or acid neutralizing capacity of a solution.

Returns
The alkalinity of the solution in mg/L as CaCO3

Return type
Quantity

Notes

The alkalinity is calculated according to [stm]

𝐴𝑙𝑘 =
∑︁
𝑖

𝑧𝑖𝐶𝐵 +
∑︁
𝑖

𝑧𝑖𝐶𝐴

Where 𝐶𝐵 and 𝐶𝐴 are conservative cations and anions, respectively (i.e. ions that do not participate in
acid-base reactions), and 𝑧𝑖 is their signed charge. In this method, the set of conservative cations is all
Group I and Group II cations, and the conservative anions are all the anions of strong acids.

References

property hardness

Return the hardness of a solution.

Hardness is defined as the sum of the equivalent concentrations of multivalent cations as calcium carbonate.

NOTE: at present pyEQL cannot distinguish between mg/L as CaCO3 and mg/L units. Use with caution.

Parameters
None –

Returns
The hardness of the solution in mg/L as CaCO3

Return type
Quantity

14 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.6.0

property debye_length: Quantity

Return the Debye length of a solution.

Debye length is calculated as [wk3]

𝜅−1 =
√︀

(
𝜖𝑟𝜖𝑜𝑘𝐵𝑇

(2𝑁𝐴𝑒2𝐼)
)

where 𝐼 is the ionic strength, 𝜖𝑟 and 𝜖𝑟 are the relative permittivity and vacuum permittivity, 𝑘𝐵 is the
Boltzmann constant, and 𝑇 is the temperature, 𝑒 is the elementary charge, and 𝑁𝐴 is Avogadro’s number.

Returns The Debye length, in nanometers.

References .. [wk3] https://en.wikipedia.org/wiki/Debye_length#Debye_length_in_an_electrolyte

See also:

ionic_strength dielectric_constant

property bjerrum_length: Quantity

Return the Bjerrum length of a solution.

Bjerrum length represents the distance at which electrostatic interactions between particles become com-
parable in magnitude to the thermal energy.:math:lambda_B is calculated as

𝜆𝐵 =
𝑒2

(4𝜋𝜖𝑟𝜖𝑜𝑘𝐵𝑇)

where 𝑒 is the fundamental charge, 𝜖𝑟 and 𝜖𝑟 are the relative permittivity and vacuum permittivity, 𝑘𝐵 is
the Boltzmann constant, and 𝑇 is the temperature.

Parameters
None –

Returns
The Bjerrum length, in nanometers.

Return type
Quantity

References

https://en.wikipedia.org/wiki/Bjerrum_length

Examples

>>> s1 = pyEQL.Solution()
>>> s1.bjerrum_length
<Quantity(0.7152793009386953, 'nanometer')>

See also:

dielectric_constant

property osmotic_pressure

Return the osmotic pressure of the solution relative to pure water.

Returns
The osmotic pressure of the solution relative to pure water in Pa

1.1. Key Features 15

https://en.wikipedia.org/wiki/Debye_length#Debye_length_in_an_electrolyte
https://en.wikipedia.org/wiki/Bjerrum_length

pyEQL Documentation, Release v0.6.0

See also:

get_water_activity get_osmotic_coefficient get_salt

Notes

Osmotic pressure is calculated based on the water activity [sata] [wk]

Π =
𝑅𝑇

𝑉𝑤
ln 𝑎𝑤

Where Π is the osmotic pressure, 𝑉𝑤 is the partial molar volume of water (18.2 cm**3/mol), and 𝑎𝑤 is the
water activity.

References

Examples

>>> s1=pyEQL.Solution()
>>> s1.osmotic_pressure
0.0

>>> s1 = pyEQL.Solution([['Na+','0.2 mol/kg'],['Cl-','0.2 mol/kg']])
>>> soln.osmotic_pressure
<Quantity(906516.7318131207, 'pascal')>

get_amount(solute, units)
Return the amount of ‘solute’ in the parent solution.

The amount of a solute can be given in a variety of unit types. 1. substance per volume (e.g., ‘mol/L’)
2. substance per mass of solvent (e.g., ‘mol/kg’) 3. mass of substance (e.g., ‘kg’) 4. moles of substance
(‘mol’) 5. mole fraction (‘fraction’) 6. percent by weight (%) 7. number of molecules (‘count’)

Parameters

• solute (str) – String representing the name of the solute of interest

• units (str) – Units desired for the output. Examples of valid units are
‘mol/L’,’mol/kg’,’mol’, ‘kg’, and ‘g/L’ Use ‘fraction’ to return the mole fraction. Use ‘%’
to return the mass percent

Return type
The amount of the solute in question, in the specified units

See also:

add_amount, set_amount, get_total_amount, get_osmolarity, get_osmolality, get_mass,
get_total_moles_solute

get_total_amount(element, units)
Return the total amount of ‘element’ (across all solutes) in the solution.

Parameters

• element (str) – String representing the name of the element of interest

• units (str) – Units desired for the output. Examples of valid units are
‘mol/L’,’mol/kg’,’mol’, ‘kg’, and ‘g/L’

16 Chapter 1. Description

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.6.0

Return type
The total amount of the element in the solution, in the specified units

Notes

There is currently no way to distinguish between different oxidation states of the same element (e.g.
TOTFe(II) vs. TOTFe(III)). This is planned for a future release.

See also:

get_amount

add_solute(formula, amount)
Primary method for adding substances to a pyEQL solution.

Parameters

• formula (str) – Chemical formula for the solute. Charged species must contain a + or -
and (for polyvalent solutes) a number representing the net charge (e.g. ‘SO4-2’).

• amount (str) – The amount of substance in the specified unit system. The string should
contain both a quantity and a pint-compatible representation of a unit. e.g. ‘5 mol/kg’ or
‘0.1 g/L’

add_solvent(formula, amount)
Same as add_solute but omits the need to pass solvent mass to pint.

add_amount(solute, amount)
Add the amount of ‘solute’ to the parent solution.

Parameters

• solute (str) – String representing the name of the solute of interest

• amount (str quantity) – String representing the concentration desired, e.g. ‘1 mol/kg’
If the units are given on a per-volume basis, the solution volume is not recalculated If the
units are given on a mass, substance, per-mass, or per-substance basis, then the solution
volume is recalculated based on the new composition

Return type
Nothing. The concentration of solute is modified.

set_amount(solute, amount)
Set the amount of ‘solute’ in the parent solution.

Parameters

• solute (str) – String representing the name of the solute of interest

• amount (str Quantity) – String representing the concentration desired, e.g. ‘1 mol/kg’
If the units are given on a per-volume basis, the solution volume is not recalculated and the
molar concentrations of other components in the solution are not altered, while the molal
concentrations are modified.

If the units are given on a mass, substance, per-mass, or per-substance basis, then the solu-
tion volume is recalculated based on the new composition and the molal concentrations of
other components are not altered, while the molar concentrations are modified.

Return type
Nothing. The concentration of solute is modified.

1.1. Key Features 17

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.6.0

get_total_moles_solute()→ Quantity
Return the total moles of all solute in the solution.

get_moles_solvent()→ Quantity
Return the moles of solvent present in the solution.

Returns
The moles of solvent in the solution.

get_osmolarity(activity_correction=False)
Return the osmolarity of the solution in Osm/L.

Parameters
activity_correction (bool) – If TRUE, the osmotic coefficient is used to calculate the
osmolarity. This correction is appropriate when trying to predict the osmolarity that would
be measured from e.g. freezing point depression. Defaults to FALSE if omitted.

get_osmolality(activity_correction=False)
Return the osmolality of the solution in Osm/kg.

Parameters
activity_correction (bool) – If TRUE, the osmotic coefficient is used to calculate the
osmolarity. This correction is appropriate when trying to predict the osmolarity that would
be measured from e.g. freezing point depression. Defaults to FALSE if omitted.

get_salt()

Determine the predominant salt in a solution of ions.

Many empirical equations for solution properties such as activity coefficient, partial molar volume, or vis-
cosity are based on the concentration of single salts (e.g., NaCl). When multiple ions are present (e.g., a
solution containing Na+, Cl-, and Mg+2), it is generally not possible to directly model these quantities.
pyEQL works around this problem by treating such solutions as single salt solutions.

The get_salt() method examines the ionic composition of a solution and returns an object that identifies the
single most predominant salt in the solution, defined by the cation and anion with the highest mole fraction.
The Salt object contains information about the stoichiometry of the salt to enable its effective concentration
to be calculated (e.g., 1 M MgCl2 yields 1 M Mg+2 and 2 M Cl-).

Parameters
None –

Returns
Salt object containing information about the parent salt.

Return type
Salt

See also:

get_activity(), get_activity_coefficient(), get_water_activity(),
get_osmotic_coefficient(), get_osmotic_pressure(), get_viscosity_kinematic()

18 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/functions.html#bool

pyEQL Documentation, Release v0.6.0

Examples

>>> s1 = Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']])
>>> s1.get_salt()
<pyEQL.salt_ion_match.Salt object at 0x7fe6d3542048>
>>> s1.get_salt().formula
'NaCl'
>>> s1.get_salt().nu_cation
1
>>> s1.get_salt().z_anion
-1

>>> s2 = pyEQL.Solution([['Na+','0.1 mol/kg'],['Mg+2','0.2 mol/kg'],['Cl-','0.5␣
→˓mol/kg']])
>>> s2.get_salt().formula
'MgCl2'
>>> s2.get_salt().nu_anion
2
>>> s2.get_salt().z_cation
2

get_salt_dict()→ dict
Determine the predominant salt in a solution of ions.

Many empirical equations for solution properties such as activity coefficient, partial molar volume, or vis-
cosity are based on the concentration of single salts (e.g., NaCl). When multiple ions are present (e.g., a
solution containing Na+, Cl-, and Mg+2), it is generally not possible to directly model these quantities.

The get_salt_dict() method examines the ionic composition of a solution and simplifies it into a list of salts.
The method returns a dictionary of Salt objects where the keys are the salt formulas (e.g., ‘NaCl’). The
Salt object contains information about the stoichiometry of the salt to enable its effective concentration to
be calculated (e.g., 1 M MgCl2 yields 1 M Mg+2 and 2 M Cl-).

Parameters
None –

Returns

• dict – A dictionary of Salt objects, keyed to the salt formula

• See Also

• ——–

• get_activity()

• get_activity_coefficient()

• get_water_activity()

• get_osmotic_coefficient()

• get_osmotic_pressure()

• get_viscosity_kinematic()

get_activity_coefficient(solute: str, scale: Literal['molal', 'molar', 'fugacity', 'rational'] = 'molal',
verbose: bool = False)

Return the activity coefficient of a solute in solution.

1.1. Key Features 19

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/functions.html#bool

pyEQL Documentation, Release v0.6.0

The model used to calculte the activity coefficient is determined by the Solution’s equation of state engine.

Parameters

• solute – The solute for which to retrieve the activity coefficient

• scale – The activity coefficient concentration scale

• verbose – If True, pyEQL will print a message indicating the parent salt that is being used
for activity calculations. This option is useful when modeling multicomponent solutions.
False by default.

Returns
Quantity: the activity coefficient as a dimensionless pint Quantity

get_activity(solute: str, scale: Literal['molal', 'molar', 'rational'] = 'molal', verbose: bool = False)
Return the thermodynamic activity of the solute in solution on the chosen concentration scale.

Parameters

• solute – String representing the name of the solute of interest

• scale – The concentration scale for the returned activity. Valid options are “molal”, “mo-
lar”, and “rational” (i.e., mole fraction). By default, the molal scale activity is returned.

• verbose – If True, pyEQL will print a message indicating the parent salt that is being used
for activity calculations. This option is useful when modeling multicomponent solutions.
False by default.

Returns
The thermodynamic activity of the solute in question (dimensionless)

Notes

The thermodynamic activity depends on the concentration scale used [rs] . By default, the ionic strength,
activity coefficients, and activities are all calculated based on the molal (mol/kg) concentration scale.

References

See also:

get_activity_coefficient() ionic_strength get_salt()

get_osmotic_coefficient(scale: Literal['molal', 'molar', 'rational'] = 'molal')
Return the osmotic coefficient of an aqueous solution.

The method used depends on the Solution object’s equation of state engine.

get_water_activity()

Return the water activity.

Returns
The thermodynamic activity of water in the solution.

Return type
Quantity

See also:

get_activity_coefficient(), ionic_strength , get_salt()

20 Chapter 1. Description

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/typing.html#typing.Literal

pyEQL Documentation, Release v0.6.0

Notes

Water activity is related to the osmotic coefficient in a solution containing i solutes by:

ln 𝑎𝑤 = −Φ𝑀𝑤

∑︁
𝑖

𝑚𝑖

Where𝑀𝑤 is the molar mass of water (0.018015 kg/mol) and𝑚𝑖 is the molal concentration of each species.

If appropriate Pitzer model parameters are not available, the water activity is assumed equal to the mole
fraction of water.

References

Blandamer, Mike J., Engberts, Jan B. F. N., Gleeson, Peter T., Reis, Joao Carlos R., 2005. “Activity of
water in aqueous systems: A frequently neglected property.” Chemical Society Review 34, 440-458.

Examples:

>>> s1 = pyEQL.Solution([['Na+','0.3 mol/kg'],['Cl-','0.3 mol/kg']])
>>> s1.get_water_activity()
<Quantity(0.9900944932888518, 'dimensionless')>

get_chemical_potential_energy(activity_correction=True)
Return the total chemical potential energy of a solution (not including pressure or electric effects).

Parameters
activity_correction (bool, optional) – If True, activities will be used to calculate
the true chemical potential. If False, mole fraction will be used, resulting in a calculation of
the ideal chemical potential.

Returns
The actual or ideal chemical potential energy of the solution, in Joules.

Return type
Quantity

Notes

The chemical potential energy (related to the Gibbs mixing energy) is calculated as follows: [koga]

𝐸 = 𝑅𝑇
∑︁
𝑖

𝑛𝑖 ln 𝑎𝑖

or

𝐸 = 𝑅𝑇
∑︁
𝑖

𝑛𝑖 ln𝑥𝑖

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, 𝑅 the ideal gas constant, 𝑥
the mole fraction, and 𝑎 the activity of each component.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a
three component solution (cation, anion, and water).

1.1. Key Features 21

https://docs.python.org/3.10/library/functions.html#bool

pyEQL Documentation, Release v0.6.0

References

_get_property(solute: str, name: str)→ Quantity | None
Retrieve a thermodynamic property (such as diffusion coefficient) for solute, and adjust it from the reference
conditions to the conditions of the solution.

Parameters

• solute (str) – String representing the chemical formula of the solute species

• name (str) – The name of the property needed, e.g. ‘diffusion coefficient’

Returns
Quantity

Return type
The desired parameter or None if not found

get_transport_number(solute, activity_correction=False)
Calculate the transport number of the solute in the solution.

Parameters

• solute – String identifying the solute for which the transport number is to be calculated.

• activity_correction – If True, the transport number will be corrected for activity fol-
lowing the same method used for solution conductivity. Defaults to False if omitted.

• Returns – The transport number of solute

• Notes – Transport number is calculated according to :

𝑡𝑖 =
𝐷𝑖𝑧

2
𝑖𝐶𝑖∑︀

𝐷𝑖𝑧2𝑖𝐶𝑖

Where 𝐶𝑖 is the concentration in mol/L, 𝐷𝑖 is the diffusion coefficient, and 𝑧𝑖 is the charge,
and the summation extends over all species in the solution.

If activity_correction is True, the contribution of each ion to the transport number is cor-
rected with an activity factor. See the documentation for Solution.conductivity for an ex-
planation of this correction.

• References – Geise, G. M.; Cassady, H. J.; Paul, D. R.; Logan, E.; Hickner, M. A.
“Specific ion effects on membrane potential and the permselectivity of ion exchange mem-
branes.”” Phys. Chem. Chem. Phys. 2014, 16, 21673-21681.

get_molar_conductivity(solute)
Calculate the molar (equivalent) conductivity for a solute.

Parameters
solute – String identifying the solute for which the molar conductivity is to be calculated.

Returns
The molar or equivalent conductivity of the species in the solution. Zero if the solute is not charged.

22 Chapter 1. Description

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.6.0

Notes

Molar conductivity is calculated from the Nernst-Einstein relation [smed]

𝜅𝑖 =
𝑧2𝑖𝐷𝑖𝐹

2

𝑅𝑇

Note that the diffusion coefficient is strongly variable with temperature.

References

get_mobility(solute)
Calculate the ionic mobility of the solute.

Parameters
solute (str) – String identifying the solute for which the mobility is to be calculated.

Returns
float

Return type
The ionic mobility. Zero if the solute is not charged.

Notes

This function uses the Einstein relation to convert a diffusion coefficient into an ionic mobility [smed]

𝜇𝑖 =
𝐹 |𝑧𝑖|𝐷𝑖

𝑅𝑇

References

get_lattice_distance(solute)
Calculate the average distance between molecules.

Calculate the average distance between molecules of the given solute, assuming that the molecules are
uniformly distributed throughout the solution.

Parameters
solute (str) – String representing the name of the solute of interest

Returns
Quantity

Return type
The average distance between solute molecules

1.1. Key Features 23

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.6.0

Examples

>>> soln = Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']])
>>> soln.get_lattice_distance('Na+')
1.492964.... nanometer

Notes

The lattice distance is related to the molar concentration as follows:

𝑑 = (𝐶𝑖𝑁𝐴)
− 1

3

copy()

Return a copy of the solution.

as_dict()→ dict
Convert the Solution into a dict representation that can be serialized to .json or other format.

classmethod from_dict(d: dict)→ Solution
Instantiate a Solution from a dictionary generated by as_dict().

list_solutes()

List all the solutes in the solution.

list_concentrations(unit='mol/kg', decimals=4, type='all')
List the concentration of each species in a solution.

Parameters

• unit (str) – String representing the desired concentration unit.

• decimals (int) – The number of decimal places to display. Defaults to 4.

• type (str) – The type of component to be sorted. Defaults to ‘all’ for all solutes. Other
valid arguments are ‘cations’ and ‘anions’ which return lists of cations and anions, respec-
tively.

Returns
Dictionary containing a list of the species in solution paired with their amount in the specified
units

Return type
dict

list_activities(decimals=4)
List the activity of each species in a solution.

Parameters
decimals (int) – The number of decimal places to display. Defaults to 4.

Returns
Dictionary containing a list of the species in solution paired with their activity

Return type
dict

to_json()→ str
Returns a json string representation of the MSONable object.

24 Chapter 1. Description

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.6.0

unsafe_hash()

Returns an hash of the current object. This uses a generic but low performance method of converting the
object to a dictionary, flattening any nested keys, and then performing a hash on the resulting object

classmethod validate_monty(v)
pydantic Validator for MSONable pattern

1.1.4 Chemical Formulas

pyEQL interprets the chemical formula of a substance to calculate its molecular weight and formal charge. The formula
is also used as a key to search the database for parameters (e.g. diffusion coefficient) that are used in subsequent
calculations.

How to Enter Valid Chemical Formulas

Generally speaking, type the chemical formula of your solute the “normal” way and pyEQL should be able to inerpret it.
Internally, pyEQL uses the pymatgen.core.ion.Ion class to “translate” chemical formulas into a consistent format.
Anything that the Ion class can understand will be processed into a valid formula by pyEQL.

Here are some examples:

Substance You enter pyEQL understands
Sodium Chloride “NaCl”, “NaCl(aq)”, or “ClNa” “NaCl(aq)”
Sodium Sulfate “Na(SO4)2” or “NaS2O8” “Na(SO4)2(aq)”
Sodium Ion “Na+”, “Na+1”, “Na1+”, or “Na[+]” “Na[+1]”
Magnesium Ion “Mg+2”, “Mg++”, or “Mg[++]” “Mg[+2]”
Methanol “CH3OH”, “CH4O” “‘CH3OH(aq)’”

Specifically, pyEQL uses Ion.from_formula(<formula>).reduced_formla (shown in the right hand column of
the table) to identify solutes. Notice that for charged species, the charges are always placed inside square brackets (e.g.,
Na[+1]) and always include the charge number (even for monovalent ions). Uncharged species are always suffixed by
(aq) to disambiguate them from solids.

Important: When writing multivalent ion formulas, it is strongly recommended that you put the charge number
AFTER the + or - sign (e.g., type “Mg+2” NOT “Mg2+”). The latter formula is ambiguous - it could mean ‘𝑀𝑔+2 ‘
or ‘𝑀𝑔+2‘

Manually testing a formula

If you want to make sure pyEQL is understanding your formula correctly, you can manually test it via pymatgen as
follows:

>>> from pymatgen.core.ion import Ion
>>> Ion.from_formula(<your_formula>).reduced_formula
...

1.1. Key Features 25

https://pymatgen.org/pymatgen.core.html#pymatgen.core.ion.Ion

pyEQL Documentation, Release v0.6.0

Formulas you will see when using Solution

When using the Solution class,

• When creating a Solution, you can enter chemical formulas in any format you prefer, as long as pymatgen can
understand it (see manual testing).

• The keys (solute formulas) in Solution.components are preserved in the same format the user enters them.
So if you entered Na+ for sodium ion, it will stay that way.

• Arguments to Solution.get_property can be entered in any format you prefer. When pyEQL queries the
database, it will automatically convert the formula to the canonical one from pymatgen

• Property data in the database is uniquely identified by the canonical ion formula (output of Ion.
from_formula(<formula>).reduced_formla, e.g. “Na[+1]” for sodium ion).

1.1.5 Property Database

pyEQL is distributed with a database of solute properties and model parameters needed to perform it’s calculations.
The database includes:

• Molecular weight, charge, and other chemical informatics information for any species

• Diffusion coefficients for 104 ions

• Pitzer model activity correction coefficients for 157 salts

• Pitzer model partial molar volume coefficients for 120 salts

• Jones-Dole “B” coefficients for 83 ions

• Hydrated and ionic radii for 23 ions

• Dielectric constant model parameters for 18 ions

• Partial molar volumes for 24 ions

pyEQL can automatically infer basic chemical informatics such as molecular weight and charge by passing a solute’s
formula to pymatgen.core.ion.Ion (See chemical formulas). For other physicochemical properties, it relies on data
compiled into the included database. A list of the data and species covered is available below

Format

The database is distributed as a .json file containing serialized Solute objects that define the schema for aggregated
property data (see below). By default, each instance of Solution loads this file as a maggma JSONStore and queries
data from it using the Store interface.

If desired, users can point a Solution instance to an alternate database by using the database keyword argument at
creation. The argument should contain either 1) the path to an alternate .json file (as a str) or 2) a maggma.Store
instance. The data in the file or Store must match the schema defined by Solute, with the field formula used as the
key field (unique identifier).

s1 = Solution(database='/path/to/my_database.json')

or

from maggma.core import JSONStore

(continues on next page)

26 Chapter 1. Description

https://materialsproject.github.io/maggma/
https://materialsproject.github.io/maggma/reference/stores/#maggma.stores.mongolike.JSONStore
https://materialsproject.github.io/maggma/concepts/#store

pyEQL Documentation, Release v0.6.0

(continued from previous page)

db_store = JSONStore('/path/to/my_database.json', key='formula')
s1 = Solution(database=db_store)

The Solute class

pyEQL.Solute is a dataclass that defines a schema for organizing solute property data. You can think of the schema
as a structured dictionary: Solute defines the naming and organization of the keys. You can create a basic Solute
from just the solute’s formula as follows:

>>> from pyEQL.solute import Solute
>>> Solute.from_formula('Ti+2')
Solute(formula='Ti[+2]', charge=2, molecular_weight='47.867 g/mol', elements=['Ti'],␣
→˓chemsys='Ti', pmg_ion=Ion: Ti1 +2, formula_html='Ti⁺²', formula_latex='Ti$^
→˓{+2}$', formula_hill='Ti', formula_pretty='Ti^+2', oxi_state_guesses=({'Ti': 2.0},), n_
→˓atoms=1, n_elements=1, size={'radius_ionic': None, 'radius_hydrated': None, 'radius_vdw
→˓': None, 'molar_volume': None}, thermo={'G_hydration': None, 'G_formation': None},␣
→˓transport={'diffusion_coefficient': None}, model_parameters={'activity_pitzer': {'Beta0
→˓': None, 'Beta1': None, 'Beta2': None, 'Cphi': None, 'Max_C': None}, 'molar_volume_
→˓pitzer': {'Beta0': None, 'Beta1': None, 'Beta2': None, 'Cphi': None, 'V_o': None, 'Max_
→˓C': None}, 'viscosity_jones_dole': {'B': None}})

This method uses pymatgen to populate the Solute with basic chemical information like molecular weight. You can
access top-level keys in the schema via attribute, e.g.

>>> s.molecular_weight
'47.867 g/mol'
>>> s.charge
2.0

Other properties that are present in the schema, but not set, are None. For example, here we have not specified a
diffusion coefficient. If we inspect the transport attribute, we see

>>> s.transport
{'diffusion_coefficient': None}

You can convert a Solute into a regular dictionary using Solute.as_dict()

‘”

s.as_dict() {‘formula’: ‘Ti[+2]’, ‘charge’: 2, ‘molecular_weight’: ‘47.867 g/mol’,
‘elements’: [‘Ti’], ‘chemsys’: ‘Ti’, ‘pmg_ion’: Ion: Ti1 +2, ‘formula_html’:
‘Ti+2’, ‘formula_latex’: ‘Ti+2’, ‘formula_hill’: ‘Ti’, ‘formula_pretty’: ‘Ti^+2’,
‘oxi_state_guesses’: ({‘Ti’: 2.0},), ‘n_atoms’: 1, ‘n_elements’: 1, ‘size’: {‘ra-
dius_ionic’: None, ‘radius_hydrated’: None, ‘radius_vdw’: None, ‘molar_volume’:
None}, ‘thermo’: {‘G_hydration’: None, ‘G_formation’: None}, ‘transport’:
{‘diffusion_coefficient’: None}, ‘model_parameters’: {‘activity_pitzer’: {‘Beta0’:
None, ‘Beta1’: None, ‘Beta2’: None, ‘Cphi’: None, ‘Max_C’: None}, ‘mo-
lar_volume_pitzer’: {‘Beta0’: None, ‘Beta1’: None, ‘Beta2’: None, ‘Cphi’: None,
‘V_o’: None, ‘Max_C’: None}, ‘viscosity_jones_dole’: {‘B’: None}}} ‘”

1.1. Key Features 27

https://docs.python.org/3/library/dataclasses.html

pyEQL Documentation, Release v0.6.0

Searching the database

Once you have a created a Solution, it will automatically search the database for needed parameters whenever it needs
to perform a calculation. For example, if you call get_transport_number, pyEQL will search the property database
for diffusion coefficient data to use in the calculation. No user action is needed.

If you want to search the database yourself, or to inspect the values that pyEQL uses for a particular parameter, you can
do so via the get_property method. First, create a Solution

>>> from pyEQL import Solution
>>> s1 = pyEQL.Solution

Next, call get_property with a solute name and the name of the property you need. Valid property names are any
key in the Solute schema. Nested keys can be separated by periods, e.g. “model_parameters.activity_pitzer”:

>>> s1.get_property('Mg+2', 'transport.diffusion_coefficient')
<Quantity(0.00705999997, 'centimeter ** 2 * liter * pascal * second / kilogram / meter␣
→˓** 2')>

If the property exists, it will be returned as a pint Quantity object, which you can convert to specific units if needed,
e.g.

>>> s1.get_property('Mg+2', 'transport.diffusion_coefficient').to('m**2/s')
<Quantity(7.05999997e-10, 'meter ** 2 / second')>

If the property does not exist in the database, None will be returned.

>>> s1.get_property('Mg+2', 'transport.randomproperty')
>>>

Although the database contains additional context about each and every property value, such as a citation, this infor-
mation is not currently exposed via the Solution interface. Richer methods for exploring and adding to the database
may be added in the future.

Species included

The database currently contains one or more physichochemical properties for each of the solutes listed below. More
detailed information about which properties are available for which solutes may be added in the future.

• Ac[+3]

• Ag(CN)2[-1]

• AgNO3(aq)

• Ag[+1]

• Ag[+2]

• Ag[+3]

• Al2(SO4)3(aq)

• Al[+3]

• AsO4[-3]

• Au(CN)2[-1]

• Au(CN)4[-1]

28 Chapter 1. Description

https://pint.readthedocs.io/en/stable/

pyEQL Documentation, Release v0.6.0

• Au[+1]

• Au[+2]

• Au[+3]

• B(H5C6)4[-1]

• B(OH)3(aq)

• B(OH)4[-1]

• BF4[-1]

• BO2[-1]

• Ba(ClO4)2(aq)

• Ba(NO3)2(aq)

• BaBr2(aq)

• BaC4O.3H2O(aq)

• BaCl2(aq)

• BaI2(aq)

• Ba[+2]

• BeSO4(aq)

• Be[+2]

• Bi[+3]

• BrO3[-1]

• Br[-0.33333333]

• Br[-1]

• C2N3[-1]

• CH3COO[-1]

• CNO[-1]

• CN[-1]

• CO3[-2]

• CSN[-1]

• CSeN[-1]

• Ca(ClO4)2(aq)

• Ca(NO3)2(aq)

• CaBr2(aq)

• CaCl2(aq)

• CaI2(aq)

• Ca[+2]

• Cd(ClO4)2(aq)

• Cd(NO2)2(aq)

1.1. Key Features 29

pyEQL Documentation, Release v0.6.0

• Cd(NO3)2(aq)

• CdSO4(aq)

• Cd[+2]

• CeCl3(aq)

• Ce[+3]

• Ce[+4]

• ClO2[-1]

• ClO3[-1]

• ClO4[-1]

• Cl[-1]

• Co(CN)6[-3]

• Co(H3N)6[-3]

• Co(NO3)2(aq)

• CoBr2(aq)

• CoCl2(aq)

• CoI2(aq)

• Co[+2]

• Co[+3]

• Cr(NO3)3(aq)

• CrCl3(aq)

• CrO4[-2]

• Cr[+2]

• Cr[+3]

• Cs2SO4(aq)

• CsBr(aq)

• CsCl(aq)

• CsF(aq)

• CsHC2O.1H2O(aq)

• CsI(aq)

• CsNO2(aq)

• CsNO3(aq)

• CsOH(aq)

• Cs[+1]

• Cu(NO3)2(aq)

• CuCl2(aq)

• CuSO4(aq)

30 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

• Cu[+1]

• Cu[+2]

• Cu[+3]

• Dy[+2]

• Dy[+3]

• Er[+2]

• Er[+3]

• Eu(NO3)3(aq)

• EuCl3(aq)

• Eu[+2]

• Eu[+3]

• F[-1]

• Fe(CN)6[-3]

• Fe(CN)6[-4]

• FeCl2(aq)

• FeCl3(aq)

• Fe[+2]

• Fe[+3]

• Ga[+3]

• GdCl3(aq)

• Gd[+3]

• Ge[+2]

• H2CO3(aq)

• H2O(aq)

• H2SNO3[-1]

• H2SO4(aq)

• H3O[+1]

• H4BrN(aq)

• H4IN(aq)

• H4N2O3(aq)

• H4NCl(aq)

• H4NClO4(aq)

• H4N[+1]

• H4SNO4(aq)

• H5C6O7[-3]

• H5N2[+1]

1.1. Key Features 31

pyEQL Documentation, Release v0.6.0

• H8S(NO2)2(aq)

• HBr(aq)

• HCO2[-1]

• HCO3[-1]

• HCl(aq)

• HClO4(aq)

• HF2[-1]

• HI(aq)

• HNO3(aq)

• HO2[-1]

• HOsO5[-1]

• HSO3[-1]

• HSO4[-1]

• HS[-1]

• HSeO3[-1]

• H[+1]

• Hf[+4]

• Hg[+2]

• Ho[+2]

• Ho[+3]

• IO3[-1]

• IO4[-1]

• I[-1]

• In[+1]

• In[+2]

• In[+3]

• IrO4[-1]

• Ir[+3]

• K2CO3(aq)

• K2PHO4(aq)

• K2SO4(aq)

• K3Fe(CN)6(aq)

• K3PO4(aq)

• K4Fe(CN)6(aq)

• KBr(aq)

• KBrO3(aq)

32 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

• KCSN(aq)

• KCl(aq)

• KClO3(aq)

• KClO4(aq)

• KCrO4(aq)

• KF(aq)

• KHC2O.1H2O(aq)

• KHCO3(aq)

• KI(aq)

• KNO2(aq)

• KNO3(aq)

• KOH(aq)

• KPO3.1H2O(aq)

• K[+1]

• La(NO3)3(aq)

• LaCl3(aq)

• La[+3]

• Li2SO4(aq)

• LiBr(aq)

• LiCl(aq)

• LiClO4(aq)

• LiHC2O.1H2O(aq)

• LiI(aq)

• LiNO2(aq)

• LiNO3(aq)

• LiOH(aq)

• Li[+1]

• Lu[+3]

• Mg(ClO4)2(aq)

• Mg(NO3)2(aq)

• MgBr2(aq)

• MgC4O.3H2O(aq)

• MgCl2(aq)

• MgI2(aq)

• MgSO4(aq)

• Mg[+2]

1.1. Key Features 33

pyEQL Documentation, Release v0.6.0

• MnCl2(aq)

• MnO4[-1]

• MnSO4(aq)

• Mn[+2]

• Mn[+3]

• MoO4[-2]

• Mo[+3]

• NO2[-1]

• NO3[-1]

• N[-0.33333333]

• Na2CO3(aq)

• Na2PHO4(aq)

• Na2S2O3(aq)

• Na2SO4(aq)

• Na3PO4(aq)

• NaBr(aq)

• NaBrO3(aq)

• NaCSN(aq)

• NaCl(aq)

• NaClO4(aq)

• NaCrO4(aq)

• NaF(aq)

• NaHC2O.1H2O(aq)

• NaHC3.2H2O(aq)

• NaHCO2(aq)

• NaHCO3(aq)

• NaI(aq)

• NaNO2(aq)

• NaNO3(aq)

• NaOH(aq)

• NaPO3.1H2O(aq)

• Na[+1]

• Nb[+3]

• Nd(NO3)3(aq)

• NdCl3(aq)

• Nd[+2]

34 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

• Nd[+3]

• Ni(NO3)2(aq)

• NiCl2(aq)

• NiSO4(aq)

• Ni[+2]

• Ni[+3]

• Np[+3]

• Np[+4]

• OH[-1]

• Os[+3]

• P(HO2)2[-1]

• P(OH)2[-1]

• P2O7[-4]

• P3O10[-5]

• PF6[-1]

• PH9(NO2)2(aq)

• PHO4[-2]

• PO3F[-2]

• PO3[-1]

• PO4[-3]

• Pa[+3]

• Pb(ClO4)2(aq)

• Pb(NO3)2(aq)

• Pb[+2]

• Pd[+2]

• Pm[+2]

• Pm[+3]

• Po[+2]

• PrCl3(aq)

• Pr[+2]

• Pr[+3]

• Pt[+2]

• Pu[+2]

• Pu[+4]

• Ra[+2]

• Rb2SO4(aq)

1.1. Key Features 35

pyEQL Documentation, Release v0.6.0

• RbBr(aq)

• RbCl(aq)

• RbF(aq)

• RbHC2O.1H2O(aq)

• RbI(aq)

• RbNO2(aq)

• RbNO3(aq)

• RbOH(aq)

• Rb[+1]

• ReO4[-1]

• Re[+1]

• Re[+3]

• Re[-1]

• Rh[+3]

• Ru[+2]

• Ru[+3]

• S2O3[-2]

• SO2[-1]

• SO3[-1]

• SO3[-2]

• SO4[-1]

• SO4[-2]

• S[-2]

• Sb(HO2)2[-1]

• Sb(OH)6[-1]

• ScCl3(aq)

• Sc[+2]

• Sc[+3]

• SeO3[-1]

• SeO4[-1]

• SeO4[-2]

• SiF6[-2]

• SmCl3(aq)

• Sm[+2]

• Sm[+3]

• Sn[+2]

36 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

• Sn[+4]

• Sr(ClO4)2(aq)

• Sr(NO3)2(aq)

• SrBr2(aq)

• SrCl2(aq)

• SrI2(aq)

• Sr[+2]

• Ta[+3]

• Tb[+3]

• TcO4[-1]

• Tc[+2]

• Tc[+3]

• Th(NO3)4(aq)

• Th[+4]

• Ti[+2]

• Ti[+3]

• Tl(ClO4)3(aq)

• Tl(NO2)3(aq)

• Tl(NO3)3(aq)

• TlH(C3O)2.4H2O(aq)

• Tl[+1]

• Tl[+3]

• Tm[+2]

• Tm[+3]

• U(ClO)2(aq)

• U(ClO5)2(aq)

• U(NO4)2(aq)

• UO2[+1]

• UO2[+2]

• USO6(aq)

• U[+3]

• U[+4]

• VO2[+1]

• V[+2]

• V[+3]

• WO4[-1]

1.1. Key Features 37

pyEQL Documentation, Release v0.6.0

• WO4[-2]

• W[+3]

• YCl3(aq)

• YNO3(aq)

• Y[+3]

• Yb[+2]

• Yb[+3]

• Zn(ClO4)2(aq)

• Zn(NO3)2(aq)

• ZnBr2(aq)

• ZnCl2(aq)

• ZnI2(aq)

• ZnSO4(aq)

• Zn[+2]

• Zr[+4]

1.1.6 Contributing to pyEQL

Reporting Issues

You can help the project simply by using pyEQL and comparing the output to experimental data and/or other models
and tools. If you encounter any bugs, packaging issues, feature requests, comments, or questions, please report them
using the issue tracker on github.

Contributing Code

To contribute bug fixes, documentation enhancements, or new code, please fork pyEQL and send us a pull request. It’s
not as hard as it sounds! Beginning with version 0.6.0, we follow the GitHub flow workflow model.

Hacking pyEQL, step by step

1. Fork the pyEQL repository on Github

2. Clone your repository to a directory of your choice:

git clone https://github.com/<username>/pyEQL

3. Install the package and the test dependencies by running the following command from the repository directory:

pip install -e '.[testing]``

4. Create a branch for your work. Preferably, start your branch name with “feature-”, “fix-”, or “doc-” depending
on whether you are contributing bug fixes, documentation or a new feature, e.g. prefix your branch with “fix-”
or “doc-” as appropriate:

38 Chapter 1. Description

https://github.com/rkingsbury/pyEQL/issues
https://github.com/rkingsbury/pyeql
https://docs.github.com/en/get-started/quickstart/github-flow
https://help.github.com/articles/fork-a-repo/

pyEQL Documentation, Release v0.6.0

git checkout -b mybranch

or

git checkout -b doc-mydoc

or

git checkout -b feature-myfeature

5. Make changes to the code until you’re satisfied.

6. Push your work back to Github:

git push origin feature-myfeature

7. Create a pull request with your changes. See this tutorial for instructions.

Guidelines

Please abide by the following guidelines when contributing code to pyEQL:

• All changes you make to quacc should be accompanied by unit tests and should not break existing tests. To run
the full test suite, run pytest tests/ from the repository directory.

• Code coverage should be maintained or increase. Each PR will report code coverage after the tests pass, but you
can check locally using pytest-cov, by running pytest --cov tests/

• All code should include type hints and have internally consistent documentation for the inputs and outputs.

• Use Google style docstrings

• Lint your code with ruff by running ruff check --fix src/ from the repo directory. Alternatively, you
can install the pre-commit hooks by running pre-commit install from the repository directory. This will
prevent committing new changes until all linting errors are fixed.

• Update the CHANGELOG.md file.

• Ask questions and be open to feedback!

Documentation

Improvements to the documentation are most welcome! Our documentation system uses sphinx with the Materials for
Sphinx theme. To edit the documentation locally, run tox -e autodocs from the repository root directory. This will
serve the documents to http://localhost:8000/ so you can view them in your web browser. When you make changes to
the files in the docs/ directory, the documentation will automatically rebuild and update in your browser (you might
have to refresh the page to see changes).

1.1. Key Features 39

https://yangsu.github.io/pull-request-tutorial
https://pytest-cov.readthedocs.io/en/latest/
https://github.com/astral-sh/ruff
https://bashtage.github.io/sphinx-material/
https://bashtage.github.io/sphinx-material/
http://localhost:8000/

pyEQL Documentation, Release v0.6.0

Changelog

We keep a CHANGELOG.md file in the base directory of the repository. Before submitting your PR, be sure to update the
CHANGELOG.md file under the “Unreleased” section with a brief description of your changes. Our CHANGELOG.md file
lossely follows the Keep a Changelog format, beginning with v0.6.0.

1.1.7 Functions Module

pyEQL functions that take Solution objects as inputs or return Solution objects.

copyright
2013-2023 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

pyEQL.functions.autogenerate(solution='')
This method provides a quick way to create Solution objects representing commonly-encountered solutions, such
as seawater, rainwater, and wastewater.

Parameters
solution (str) – String representing the desired solution Valid entries are ‘seawater’, ‘rainwa-
ter’, ‘wastewater’,and ‘urine’

Returns
A pyEQL Solution object.

Return type
Solution

Notes

The following sections explain the different solution options:

• ‘’ - empty solution, equivalent to pyEQL.Solution()

• ‘rainwater’ - pure water in equilibrium with atmospheric CO2 at pH 6

• ‘seawater’ or ‘SW’- Standard Seawater. See Table 4 of the Reference for Composition [1]_

• ‘wastewater’ or ‘WW’ - medium strength domestic wastewater. See Table 3-18 of [2]_

• ‘urine’ - typical human urine. See Table 3-15 of [2]_

• ‘normal saline’ or ‘NS’ - normal saline solution used in medicine [3]_

• ‘Ringers lacatate’ or ‘RL’ - Ringer’s lactate solution used in medicine [4]_

References:

pyEQL.functions.donnan_eql(solution, fixed_charge)
Return a solution object in equilibrium with fixed_charge.

Parameters

• solution (Solution object) – The external solution to be brought into equilibrium with
the fixed charges

40 Chapter 1. Description

https://keepachangelog.com/en/1.0.0/
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.6.0

• fixed_charge (str quantity) – String representing the concentration of fixed charges,
including sign. May be specified in mol/L or mol/kg units. e.g. ‘1 mol/kg’

Returns
A solution that has established Donnan equilibrium with the external (input) Solution

Return type
Solution

Notes

The general equation representing the equilibrium between an external electrolyte solution and an ion-exchange
medium containing fixed charges is

In addition, electroneutrality must prevail within the membrane phase:

𝐶+𝑧+ + 𝑋̄ + 𝐶−𝑧− = 0

Where 𝐶 represents concentration and 𝑋 is the fixed charge concentration in the membrane or ion exchange phase.

This function solves these two equations simultaneously to arrive at the concentrations of the cation and anion in the
membrane phase. It returns a solution equal to the input solution except that the concentrations of the predominant
cation and anion have been adjusted according to this equilibrium.

NOTE that this treatment is only capable of equilibrating a single salt. This salt is identified by the get_salt() method.

References

Strathmann, Heiner, ed. Membrane Science and Technology vol. 9, 2004. Chapter 2, p. 51.
http://dx.doi.org/10.1016/S0927-5193(04)80033-0

See Also:

get_salt()

pyEQL.functions.entropy_mix(Solution1, Solution2)
Return the ideal mixing entropy associated with mixing two solutions.

Parameters

• Solution1 (Solution objects) – The two solutions to be mixed.

• Solution2 (Solution objects) – The two solutions to be mixed.

Returns
The ideal mixing entropy associated with complete mixing of the Solutions, in Joules.

Return type
Quantity

1.1. Key Features 41

http://dx.doi.org/10.1016/S0927-5193(04)80033-0

pyEQL Documentation, Release v0.6.0

Notes

The ideal entropy of mixing is calculated as follows

𝐷𝑒𝑙𝑡𝑎𝑚𝑖𝑥𝑆 =

𝑠𝑢𝑚𝑖(𝑛𝑐 + 𝑛𝑑)𝑅𝑇

𝑙𝑛𝑥𝑏−
𝑠𝑢𝑚𝑖𝑛𝑐𝑅𝑇

𝑙𝑛𝑥𝑐−
𝑠𝑢𝑚𝑖𝑛𝑑𝑅𝑇

𝑙𝑛𝑥𝑑

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, and subscripts 𝑏, 𝑐, and 𝑑 refer to
the concentrated, dilute, and blended Solutions, respectively.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a three
component solution (cation, anion, and water).

References

Koga, Yoshikata, 2007. *Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.* Elsevier, 2007, pp. 23-37.

pyEQL.functions.gibbs_mix(Solution1, Solution2)
Return the Gibbs energy change associated with mixing two solutions.

Parameters

• Solution1 (Solution objects) – The two solutions to be mixed.

• Solution2 (Solution objects) – The two solutions to be mixed.

Returns
The change in Gibbs energy associated with complete mixing of the Solutions, in Joules.

Return type
Quantity

Notes

The Gibbs energy of mixing is calculated as follows

𝐷𝑒𝑙𝑡𝑎𝑚𝑖𝑥𝐺 =

𝑠𝑢𝑚𝑖(𝑛𝑐 + 𝑛𝑑)𝑅𝑇

𝑙𝑛𝑎𝑏−
𝑠𝑢𝑚𝑖𝑛𝑐𝑅𝑇

𝑙𝑛𝑎𝑐−
𝑠𝑢𝑚𝑖𝑛𝑑𝑅𝑇

𝑙𝑛𝑎𝑑

42 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, and subscripts 𝑏, 𝑐, and 𝑑 refer to
the concentrated, dilute, and blended Solutions, respectively.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a three
component solution (cation, anion, and water).

References

Koga, Yoshikata, 2007. *Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.* Elsevier, 2007, pp. 23-37.

pyEQL.functions.mix(Solution1, Solution2)
Mix two solutions together.

Returns a new Solution object that results from the mixing of Solution1 and Solution2

Parameters

• Solution1 (Solution objects) – The two solutions to be mixed.

• Solution2 (Solution objects) – The two solutions to be mixed.

Returns
A Solution object representing the mixed solution.

Return type
Solution

1.1.8 Internal module reference

These internal modules are used by Solution but typically are not directly accessed by the user.

Salt analysis module

pyEQL salt matching library.

This file contains functions that allow a pyEQL Solution object composed of individual species (usually ions) to be
mapped to a solution of one or more salts. This mapping is necessary because some parameters (such as activity
coefficient data) can only be determined for salts (e.g. NaCl) and not individual species (e.g. Na+)

copyright
2013-2023 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

class pyEQL.salt_ion_match.Salt(cation, anion)
Class to represent a salt.

get_effective_molality(ionic_strength)
Calculate the effective molality according to [mistry].

2𝐼

(𝜈+𝑧2+ + 𝜈−𝑧2−)

1.1. Key Features 43

pyEQL Documentation, Release v0.6.0

Parameters
ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

Returns
Quantity

Return type
the effective molality of the salt in the parent solution

References

pyEQL.salt_ion_match._sort_components(Solution, type='all')
Sort the components of a solution in descending order (by mol).

Parameters

• Solution (Solution object) –

• type (The type of component to be sorted. Defaults to 'all' for all) –
solutes. Other valid arguments are ‘cations’ and ‘anions’ which return sorted lists of cations
and anions, respectively.

Returns

• A list whose keys are the component names (formulas) and whose

• values are the component objects themselves

pyEQL.salt_ion_match.generate_salt_list(sol, unit='mol/kg')
Generate a list of salts that represents the ionic composition of a solution.

Returns
A dictionary of Salt objects, where Salt objects are the keys and the amounts are the values.

Return type
dict

pyEQL.salt_ion_match.identify_salt(sol)
Analyze the components of a solution and identify the salt that most closely approximates it. (e.g., if a solution
contains 0.5 mol/kg of Na+ and Cl-, plus traces of H+ and OH-, the matched salt is 0.5 mol/kg NaCl).

Create a Salt object for this salt.

Return type
A Salt object.

Activity Correction module

pyEQL activity correction library.

This file contains functions for computing molal-scale activity coefficients of ions and salts in aqueous solution.

Individual functions for activity coefficients are defined here so that they can be used independently of a pyEQL solution
object. Normally, these functions are called from within the get_activity_coefficient method of the Solution class.

copyright
2013-2023 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

44 Chapter 1. Description

https://docs.python.org/3.10/library/stdtypes.html#dict

pyEQL Documentation, Release v0.6.0

pyEQL.activity_correction._debye_parameter_B(temperature='25 degC')
Return the constant B used in the extended Debye-Huckel equation.

Parameters
temperature (str Quantity, optional) – String representing the temperature of the solu-
tion. Defaults to ‘25 degC’ if not specified.

Notes

The parameter B is equal to:

𝐵 = (
8𝜋𝑁𝐴𝑒

2

1000𝜖𝑘𝑇
)

1
2

References

Bockris and Reddy. /Modern Electrochemistry/, vol 1. Plenum/Rosetta, 1977, p.210.

Examples:

>>> _debye_parameter_B()
0.3291...

pyEQL.activity_correction._debye_parameter_activity(temperature='25 degC')
Return the constant A for use in the Debye-Huckel limiting law (base 10).

Parameters
temperature (str Quantity, optional) – String representing the temperature of the solu-
tion. Defaults to ‘25 degC’ if not specified.

Return type
Quantity The parameter A for use in the Debye-Huckel limiting law (base e)

Notes

The parameter A is equal to:

𝐴𝛾 =
𝑒3(2𝜋𝑁𝐴𝜌)

0.5

(4𝜋𝜖𝑜𝜖𝑟𝑘𝑇)1.5

Note that this equation returns the parameter value that can be used to calculate the natural logarithm of the
activity coefficient. For base 10, divide the value returned by 2.303. The value is often given in base 10 terms
(0.509 at 25 degC) in older textbooks.

1.1. Key Features 45

pyEQL Documentation, Release v0.6.0

References

Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law
Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

Examples:

>>> _debye_parameter_activity()
1.17499...

See also:

_debye_parameter_osmotic()

pyEQL.activity_correction._debye_parameter_osmotic(temperature='25 degC')
Return the constant A_phi for use in calculating the osmotic coefficient according to Debye-Huckel theory.

Parameters
temperature (str Quantity, optional) – String representing the temperature of the solu-
tion. Defaults to ‘25 degC’ if not specified.

Notes

Not to be confused with the Debye-Huckel constant used for activity coefficients in the limiting law. Takes the
value 0.392 at 25 C. This constant is calculated according to: [kim] [arch]

𝐴𝜑 =
1

3
𝐴𝛾

References

Examples:

>>> _debye_parameter_osmotic()
0.3916...

See also:

_debye_parameter_activity()

pyEQL.activity_correction._debye_parameter_volume(temperature='25 degC')
Return the constant A_V, the Debye-Huckel limiting slope for apparent molar volume.

Parameters
temperature (str Quantity, optional) – String representing the temperature of the solu-
tion. Defaults to ‘25 degC’ if not specified.

46 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

Notes

Takes the value 1.8305 cm ** 3 * kg ** 0.5 / mol ** 1.5 at 25 C. This constant is calculated according to: [1]_

𝐴𝑉 = −2𝐴𝜑𝑅𝑇 [
3

𝜖

𝜕𝜖

𝜕𝑝
− 1

𝜌

𝜕𝜌

𝜕𝑝
]

NOTE: at this time, the term in brackets (containing the partial derivatives) is approximate. These approximations
give the correct value of the slope at 25 degC and produce estimates with less than 10% error between 0 and 60
degC.

The derivative of epsilon with respect to pressure is assumed constant (for atmospheric pressure) at -0.01275
1/MPa. Note that the negative sign does not make sense in light of real data, but is required to give the correct
result.

The second term is equivalent to the inverse of the bulk modulus of water, which is taken to be 2.2 GPa. [2]_

References

See Also:

_debye_parameter_osmotic

pyEQL.activity_correction._pitzer_B_MX(ionic_strength, alpha1, alpha2, beta0, beta1, beta2)
Return the B_MX coefficient for the Pitzer ion interaction model.

𝐵𝑀𝑋 = 𝛽0 + 𝛽1𝑓1(𝛼1𝐼
0.5) + 𝛽2𝑓2(𝛼2𝐼

0.5)

Parameters

• ionic_strength (number) – The ionic strength of the parent solution, mol/kg

• alpha1 (number) – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

• alpha2 (number) – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

• beta0 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• beta1 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• beta2 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

Returns
The B_MX parameter for the Pitzer ion interaction model.

Return type
float

1.1. Key Features 47

https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.6.0

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

See Also:

_pitzer_f1

pyEQL.activity_correction._pitzer_B_phi(ionic_strength, alpha1, alpha2, beta0, beta1, beta2)
Return the B^Phi coefficient for the Pitzer ion interaction model.

𝐵Φ = 𝛽0 + 𝛽1 exp(−𝛼1𝐼
0.5) + 𝛽2 exp(−𝛼2𝐼

0.5)

or

𝐵Φ = 𝐵𝛾 −𝐵𝑀𝑋

Parameters

• ionic_strength (number) – The ionic strength of the parent solution, mol/kg

• alpha1 (number) – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

• alpha2 (number) – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

• beta0 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• beta1 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• beta2 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

Returns
The B^Phi parameter for the Pitzer ion interaction model.

Return type
float

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from
278 to 308 K and Representation with an Ion Interaction (Pitzer) Model. Journal of Chemical & Engineering
Data, 55(2), 830-838. doi:10.1021/je900487a

48 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.6.0

pyEQL.activity_correction._pitzer_f1(x)
The function of ionic strength used to calculate eta_MX in the Pitzer ion interaction model.

𝑓(𝑥) = 2[1− (1 + 𝑥) exp(−𝑥)]/𝑥2

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

pyEQL.activity_correction._pitzer_f2(x)
The function of ionic strength used to calculate beta_gamma in the Pitzer ion interaction model.

𝑓(𝑥) = − 2

𝑥2
[1− (

1 + 𝑥+ 𝑥2

2
) exp(−𝑥)]

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

pyEQL.activity_correction._pitzer_log_gamma(ionic_strength, molality, B_MX, B_phi, C_phi, z_cation,
z_anion, nu_cation, nu_anion, temperature='25 degC',
b=<Quantity(1.2, 'kilogram ** 0.5 / mole ** 0.5')>)

Return the natural logarithm of the binary activity coefficient calculated by the Pitzer ion interaction model.

ln 𝛾𝑀𝑋 = −|𝑧+𝑧−|𝐴𝑃ℎ𝑖(𝐼0.5

(1 + 𝑏𝐼0.5)
+

2

𝑏
ln(1 + 𝑏𝐼0.5)) + +

𝑚(2𝜈+𝜈−)

(𝜈+ + 𝜈−)
(𝐵𝑀𝑋 +𝐵Φ

𝑀𝑋) +
𝑚2(3(𝜈+𝜈−)

1.5

(𝜈+ + 𝜈−))
𝐶Φ

𝑀𝑋

Parameters

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

• molality (Quantity) – The concentration of the salt, mol/kg

• B_MX (Quantity) – Calculated parameters for the Pitzer ion interaction model.

• B_phi (Quantity) – Calculated parameters for the Pitzer ion interaction model.

• C_phi (Quantity) – Calculated parameters for the Pitzer ion interaction model.

• z_cation (int) – The formal charge on the cation and anion, respectively

• z_anion (int) – The formal charge on the cation and anion, respectively

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt

• temperature (str Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

1.1. Key Features 49

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.6.0

• b (number, optional) – Coefficient. Usually set equal to 1.2 kg ** 0.5 / mol ** 0.5 and
considered independent of temperature and pressure

Returns
The natural logarithm of the binary activity coefficient calculated by the Pitzer ion interaction
model.

Return type
float

References

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

pyEQL.activity_correction.get_activity_coefficient_davies(ionic_strength, formal_charge=1,
temperature='25 degC')

Return the activity coefficient of solute in the parent solution according to the Davies equation.

Parameters

• formal_charge (int, optional) – The charge on the solute, including sign. Defaults to
+1 if not specified.

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

• temperature (str Quantity, optional) – String representing the temperature of the
solution. Defaults to ‘25 degC’ if not specified.

Returns

• Quantity – The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless.

• See Also

• ——–

• _debye_parameter_activity

Notes

Activity coefficient is calculated according to:

ln 𝛾 = 𝐴𝛾𝑧2𝑖 (

√
𝐼

(1 +
√
𝐼)

+ 0.2𝐼)

Valid for 0.1 < I < 0.5

50 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.6.0

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed,
pp 103. Wiley Interscience, 1996.

pyEQL.activity_correction.get_activity_coefficient_debyehuckel(ionic_strength, formal_charge=1,
temperature='25 degC')

Return the activity coefficient of solute in the parent solution according to the Debye-Huckel limiting law.

Parameters

• formal_charge (int, optional) – The charge on the solute, including sign. Defaults to
+1 if not specified.

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

• temperature (str Quantity, optional) – String representing the temperature of the
solution. Defaults to ‘25 degC’ if not specified.

Returns

• Quantity – The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless.

• See Also

• ——–

• _debye_parameter_activity

Notes

Activity coefficient is calculated according to:

ln 𝛾 = 𝐴𝛾𝑧2𝑖
√
𝐼

Valid only for I < 0.005

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed,
pp 103. Wiley Interscience, 1996.

pyEQL.activity_correction.get_activity_coefficient_guntelberg(ionic_strength, formal_charge=1,
temperature='25 degC')

Return the activity coefficient of solute in the parent solution according to the Guntelberg approximation.

Parameters

• formal_charge (int, optional) – The charge on the solute, including sign. Defaults to
+1 if not specified.

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

• temperature (str Quantity, optional) – String representing the temperature of the
solution. Defaults to ‘25 degC’ if not specified.

Returns

• Quantity – The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless.

1.1. Key Features 51

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.6.0

• See Also

• ——–

• _debye_parameter_activity

Notes

Activity coefficient is calculated according to:

ln 𝛾 = 𝐴𝛾𝑧2𝑖

√
𝐼

(1 +
√
𝐼)

Valid for I < 0.1

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed,
pp 103. Wiley Interscience, 1996.

pyEQL.activity_correction.get_activity_coefficient_pitzer(ionic_strength, molality, alpha1, alpha2,
beta0, beta1, beta2, C_phi, z_cation,
z_anion, nu_cation, nu_anion,
temperature='25 degC', b=1.2)

Return the activity coefficient of solute in the parent solution according to the Pitzer model.

Parameters

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

• molality (Quantity) – The molal concentration of the parent salt, mol/kg

• alpha1 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• alpha2 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• beta0 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• beta1 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• beta2 (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• C_phi (number) – Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

• z_cation (int) – The formal charge on the cation and anion, respectively

• z_anion (int) – The formal charge on the cation and anion, respectively

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt

• temperature (str Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

52 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.6.0

• b (number, optional) – Coefficient. Usually set equal to 1.2 and considered independent
of temperature and pressure. If provided, this coefficient is assigned proper units of kg **
0.5 / mol ** 0.5 after entry.

Returns

• Quantity – The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless

• Examples

• ——–

• >>> get_activity_coefficient_pitzer(0.5*unit.Quantity(‘mol/kg’),0.5*unit.Quantity(‘mol/kg’),1,0.5,-
.0181191983,-.4625822071,.4682,.000246063,1,-1,1,1,b=1.2)

• 0.61915. . .

• >>> get_activity_coefficient_pitzer(5.6153*unit.Quantity(‘mol/kg’),5.6153*unit.Quantity(‘mol/kg’),3,0.5,0.0369993,0.354664,0.0997513,-
0.00171868,1,-1,1,1,b=1.2)

• 0.76331. . .

• NOTE (the examples below are for comparison with experimental and modeling data pre-
sented in)

• the May et al reference below.

• 10 mol/kg ammonium nitrate. Estimated result (from graph) = 0.2725

• >>> get_activity_coefficient_pitzer(10*unit.Quantity(‘mol/kg’),10*unit.Quantity(‘mol/kg’),2,0,-
0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)

• 0.22595 . . .

• 5 mol/kg ammonium nitrate. Estimated result (from graph) = 0.3011

• >>> get_activity_coefficient_pitzer(5*unit.Quantity(‘mol/kg’),5*unit.Quantity(‘mol/kg’),2,0,-
0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)

• 0.30249 . . .

• 18 mol/kg ammonium nitrate. Estimated result (from graph) = 0.1653

• >>> get_activity_coefficient_pitzer(18*unit.Quantity(‘mol/kg’),18*unit.Quantity(‘mol/kg’),2,0,-
0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)

• 0.16241 . . .

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from
278 to 308 K and Representation with an Ion Interaction (Pitzer) Model. Journal of Chemical & Engineering
Data, 55(2), 830-838. doi:10.1021/je900487a

1.1. Key Features 53

pyEQL Documentation, Release v0.6.0

See Also:

_debye_parameter_activity _pitzer_B_MX _pitzer_B_gamma _pitzer_B_phi _pitzer_log_gamma

pyEQL.activity_correction.get_apparent_volume_pitzer(ionic_strength, molality, alpha1, alpha2, beta0,
beta1, beta2, C_phi, V_o, z_cation, z_anion,
nu_cation, nu_anion, temperature='25 degC',
b=1.2)

Return the apparent molar volume of solute in the parent solution according to the Pitzer model.

Parameters

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

• molality (Quantity) – The molal concentration of the parent salt, mol/kg

• alpha1 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• alpha2 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• beta0 (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• beta1 (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• beta2 (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• C_phi (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• V_o (number) – The V^o Pitzer coefficient for the apparent molar volume.

• z_cation (int) – The formal charge on the cation and anion, respectively

• z_anion (int) – The formal charge on the cation and anion, respectively

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt

• temperature (str Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

• b (number, optional) – Coefficient. Usually set equal to 1.2 and considered independent
of temperature and pressure. If provided, this coefficient is assigned proper units of kg **
0.5 / mol ** 0.5 after entry.

Returns

• Quantity – The apparent molar volume of the solute, cm ** 3 / mol

• Examples

• ——–

• NOTE (the example below is for comparison with experimental and modeling data presented
in)

• the Krumgalz et al reference below.

• 0.25 mol/kg CuSO4. Expected result (from graph) = 0.5 cm * 3 / mol*

54 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.6.0

• >>> get_apparent_volume_pitzer(1.0*unit.Quantity(‘mol/kg’),0.25*unit.Quantity(‘mol/kg’),1.4,12,0.001499,-
0.008124,0.2203,-0.0002589,-6,2,-2,1,1,b=1.2)

• 0.404. . .

• 1.0 mol/kg CuSO4. Expected result (from graph) = 4 cm * 3 / mol*

• >>> get_apparent_volume_pitzer(4.0*unit.Quantity(‘mol/kg’),1.0*unit.Quantity(‘mol/kg’),1.4,12,0.001499,-
0.008124,0.2203,-0.0002589,-6,2,-2,1,1,b=1.2)

• 4.424. . .

• 10.0 mol/kg ammonium nitrate. Expected result (from graph) = 50.3 cm * 3 / mol*

• >>> get_apparent_volume_pitzer(10.0*unit.Quantity(‘mol/kg’),10.0*unit.Quantity(‘mol/kg’),2,0,0.000001742,0.0002926,0,0.000000424,46.9,1,-
1,1,1,b=1.2)

• 50.286. . .

• 20.0 mol/kg ammonium nitrate. Expected result (from graph) = 51.2 cm * 3 / mol*

• >>> get_apparent_volume_pitzer(20.0*unit.Quantity(‘mol/kg’),20.0*unit.Quantity(‘mol/kg’),2,0,0.000001742,0.0002926,0,0.000000424,46.9,1,-
1,1,1,b=1.2)

• 51.145. . .

• NOTE (the examples below are for comparison with experimental and modeling data pre-
sented in)

• the Krumgalz et al reference below.

• 0.8 mol/kg NaF. Expected result = 0.03

• >>> get_apparent_volume_pitzer(0.8*unit.Quantity(‘mol/kg’),0.8*unit.Quantity(‘mol/kg’),2,0,0.000024693,0.00003169,0,-
0.000004068,-2.426,1,-1,1,1,b=1.2)

• 0.22595 . . .

References

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

Krumgalz, Boris S., Pogorelsky, Rita (1996). Volumetric Properties of Single Aqueous Electrolytes from Zero
to Saturation Concentration at 298.15 K Represented by Pitzer’s Ion-Interaction Equations. Journal of Physical
Chemical Reference Data, 25(2), 663-689.

See Also:

_debye_parameter_volume _pitzer_B_MX

pyEQL.activity_correction.get_osmotic_coefficient_pitzer(ionic_strength, molality, alpha1, alpha2,
beta0, beta1, beta2, C_phi, z_cation,
z_anion, nu_cation, nu_anion,
temperature='25 degC', b=1.2)

Return the osmotic coefficient of water in an electrolyte solution according to the Pitzer model.

Parameters

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg

1.1. Key Features 55

pyEQL Documentation, Release v0.6.0

• molality (Quantity) – The molal concentration of the parent salt, mol/kg

• alpha1 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• alpha2 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• beta0 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta1 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta2 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• C_phi – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• z_cation (int) – The formal charge on the cation and anion, respectively

• z_anion (int) – The formal charge on the cation and anion, respectively

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt

• temperature (str Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

• b (number, optional) – Coefficient. Usually set equal to 1.2 and considered independent
of temperature and pressure. If provided, this coefficient is assigned proper units of kg **
0.5 / mol ** 0.5 after entry.

Returns

• Quantity – The osmotic coefficient of water, dimensionless

• Examples

• ——–

• Experimental value according to Beyer and Stieger reference is 1.3550

• >>> get_osmotic_coefficient_pitzer(10.175*unit.Quantity(‘mol/kg’),10.175*unit.Quantity(‘mol/kg’),1,0.5,-
.0181191983,-.4625822071,.4682,.000246063,1,-1,1,1,b=1.2)

• 1.3552 . . .

• Experimental value according to Beyer and Stieger reference is 1.084

• >>> get_osmotic_coefficient_pitzer(5.6153*unit.Quantity(‘mol/kg’),5.6153*unit.Quantity(‘mol/kg’),3,0.5,0.0369993,0.354664,0.0997513,-
0.00171868,1,-1,1,1,b=1.2)

• 1.0850 . . .

• NOTE (the examples below are for comparison with experimental and modeling data pre-
sented in)

• the May et al reference below.

• 10 mol/kg ammonium nitrate. Estimated result (from graph) = 0.62

• >>> get_osmotic_coefficient_pitzer(10*unit.Quantity(‘mol/kg’),10*unit.Quantity(‘mol/kg’),2,0,-
0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)

56 Chapter 1. Description

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.6.0

• 0.6143 . . .

• 5 mol/kg ammonium nitrate. Estimated result (from graph) = 0.7

• >>> get_osmotic_coefficient_pitzer(5*unit.Quantity(‘mol/kg’),5*unit.Quantity(‘mol/kg’),2,0,-
0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)

• 0.6925 . . .

• 18 mol/kg ammonium nitrate. Estimated result (from graph) = 0.555

• >>> get_osmotic_coefficient_pitzer(18*unit.Quantity(‘mol/kg’),18*unit.Quantity(‘mol/kg’),2,0,-
0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)

• 0.5556 . . .

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from
278 to 308 K and Representation with an Ion Interaction (Pitzer) Model. Journal of Chemical & Engineering
Data, 55(2), 830-838. doi:10.1021/je900487a

See Also:

_debye_parameter_activity _pitzer_B_MX _pitzer_B_gamma _pitzer_B_phi _pitzer_log_gamma

Speciation Engines module

pyEQL engines for computing aqueous equilibria (e.g., speciation, redox, etc.).

copyright
2013-2023 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

class pyEQL.engines.EOS

Abstract base class for pyEQL equation of state classes.

abstract equilibrate(solution)
Adjust the speciation and pH of a Solution object to achieve chemical equilibrium.

The Solution should be modified in-place, likely using add_moles / set_moles, etc.

Parameters
solution – pyEQL Solution object

1.1. Key Features 57

pyEQL Documentation, Release v0.6.0

Returns
Nothing. The speciation of the Solution is modified in-place.

Raises

• ValueError if the calculation cannot be completed, e.g. due to
insufficient number of –

• parameters or lack of convergence. –

abstract get_activity_coefficient(solution, solute)
Return the molal scale activity coefficient of solute, given a Solution object.

Parameters

• solution – pyEQL Solution object

• solute – str identifying the solute of interest

Returns
Quantity: dimensionless quantity object

Raises

• ValueError if the calculation cannot be completed, e.g. due to
insufficient number of –

• parameters. –

abstract get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of a Solution.

Parameters
solution – pyEQL Solution object

Returns
Quantity: dimensionless molal scale osmotic coefficient

Raises

• ValueError if the calculation cannot be completed, e.g. due to
insufficient number of –

• parameters. –

abstract get_solute_volume()

Return the volume of only the solutes.

Parameters
solution – pyEQL Solution object

Returns
Quantity: solute volume in L

Raises

• ValueError if the calculation cannot be completed, e.g. due to
insufficient number of –

• parameters. –

58 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

class pyEQL.engines.IdealEOS

Ideal solution equation of state engine.

equilibrate(solution)
Adjust the speciation of a Solution object to achieve chemical equilibrium.

get_activity_coefficient(solution, solute)
Return the molal scale activity coefficient of solute, given a Solution object.

get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of solute, given a Solution object.

get_solute_volume(solution)
Return the volume of the solutes.

class pyEQL.engines.NativeEOS

pyEQL’s native EOS. Uses the Pitzer model when possible, falls back to other models (e.g. Debye-Huckel) based
on ionic strength if sufficient parameters are not available.

equilibrate(solution)
Adjust the speciation of a Solution object to achieve chemical equilibrium.

get_activity_coefficient(solution, solute)
Whenever the appropriate parameters are available, the Pitzer model [may] is used. If no Pitzer parameters
are available, then the appropriate equations are selected according to the following logic: [stumm].

I <= 0.0005: Debye-Huckel equation 0.005 < I <= 0.1: Guntelberg approximation 0.1 < I <= 0.5: Davies
equation I > 0.5: Raises a warning and returns activity coefficient = 1

The ionic strength, activity coefficients, and activities are all calculated based on the molal (mol/kg) concen-
tration scale. If a different scale is given as input, then the molal-scale activity coefficient 𝛾± is converted
according to [rbs]

𝑓± = 𝛾± * (1 +𝑀𝑤

∑︁
𝑖

𝜈𝑖𝑖)

𝑦± = 𝑚𝜌𝑤/𝐶𝛾±

where 𝑓± is the rational activity coefficient, 𝑀𝑤 is the molecular weight of water, the summation represents
the total molality of all solute species, 𝑦± is the molar activity coefficient, 𝜌𝑤 is the density of pure water,
𝑚 and 𝐶 are the molal and molar concentrations of the chosen salt (not individual solute), respectively.

Parameters

• solute – String representing the name of the solute of interest

• scale – The concentration scale for the returned activity coefficient. Valid options are
“molal”, “molar”, and “rational” (i.e., mole fraction). By default, the molal scale activity
coefficient is returned.

• verbose – If True, pyEQL will print a message indicating the parent salt that is being used
for activity calculations. This option is useful when modeling multicomponent solutions.
False by default.

Returns
The mean ion activity coefficient of the solute in question on the selected scale.

1.1. Key Features 59

pyEQL Documentation, Release v0.6.0

See also:

get_ionic_strength get_salt activity_correction.get_activity_coefficient_debyehuckel activ-
ity_correction.get_activity_coefficient_guntelberg activity_correction.get_activity_coefficient_davies
activity_correction.get_activity_coefficient_pitzer

Notes

For multicomponent mixtures, pyEQL implements the “effective Pitzer model” presented by Mistry et al.
[mistry]. In this model, the activity coefficient of a salt in a multicomponent mixture is calculated using
an “effective molality,” which is the molality that would result in a single-salt mixture with the same total
ionic strength as the multicomponent solution.

𝑚𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 2𝐼

(𝜈+𝑧2+ + 𝜈 − 𝑧2−)

References

get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of solute, given a Solution object.

Osmotic coefficient is calculated using the Pitzer model. [may] If appropriate parameters for the model are
not available, then pyEQL raises a WARNING and returns an osmotic coefficient of 1.

If the ‘rational’ scale is given as input, then the molal-scale osmotic coefficient 𝜑 is converted according to
[rbs]

𝑔 = −𝜑 *𝑀𝑤

∑︁
𝑖

𝜈𝑖𝑖)/ ln𝑥𝑤

where 𝑔 is the rational osmotic coefficient, 𝑀𝑤 is the molecular weight of water, the summation represents
the total molality of all solute species, and 𝑥𝑤 is the mole fraction of water.

Parameters

• scale –

• "molal" (The concentration scale for the returned osmotic
coefficient. Valid options are) –

:param : :param “rational”: :type “rational”: i.e., mole fraction :param coefficient is returned.:

Returns

Quantity:
The osmotic coefficient

See also:

get_water_activity get_ionic_strength get_salt

Notes

For multicomponent mixtures, pyEQL adopts the “effective Pitzer model” presented by Mistry et al.
[mstry]. In this approach, the osmotic coefficient of each individual salt is calculated using the normal
Pitzer model based on its respective concentration. Then, an effective osmotic coefficient is calculated as
the concentration-weighted average of the individual osmotic coefficients.

For example, in a mixture of 0.5 M NaCl and 0.5 M KBr, one would calculate the osmotic coefficient for
each salt using a concentration of 0.5 M and an ionic strength of 1 M. Then, one would average the two
resulting osmotic coefficients to obtain an effective osmotic coefficient for the mixture.

60 Chapter 1. Description

pyEQL Documentation, Release v0.6.0

(Note: in the paper referenced below, the effective osmotic coefficient is determined by weighting using the
“effective molality” rather than the true molality. Subsequent checking and correspondence with the author
confirmed that the weight factor should be the true molality, and that is what is implemented in pyEQL.)

References

Examples

>>> s1 = pyEQL.Solution([['Na+','0.2 mol/kg'],['Cl-','0.2 mol/kg']])
>>> s1.get_osmotic_coefficient()
<Quantity(0.923715281, 'dimensionless')>

>>> s1 = pyEQL.Solution([['Mg+2','0.3 mol/kg'],['Cl-','0.6 mol/kg']],
→˓temperature='30 degC')
>>> s1.get_osmotic_coefficient()
<Quantity(0.891409618, 'dimensionless')>

get_solute_volume(solution)
Return the volume of the solutes.

1.1. Key Features 61

pyEQL Documentation, Release v0.6.0

62 Chapter 1. Description

BIBLIOGRAPHY

[aq] https://www.aqion.de/site/electrical-conductivity

[hc] http://www.hydrochemistry.eu/exmpls/sc.html

[stm] Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed, pp 165. Wiley Interscience, 1996.

[sata] Sata, Toshikatsu. Ion Exchange Membranes: Preparation, Characterization, and Modification. Royal Society
of Chemistry, 2004, p. 10.

[wk] http://en.wikipedia.org/wiki/Osmotic_pressure#Derivation_of_osmotic_pressure

[rs] Robinson, R. A.; Stokes, R. H. Electrolyte Solutions: Second Revised Edition; Butterworths: London, 1968,
p.32.

[koga] Koga, Yoshikata, 2007. Solution Thermodynamics and its Application to Aqueous Solutions: A differential
approach. Elsevier, 2007, pp. 23-37.

[smed] Smedley, Stuart. The Interpretation of Ionic Conductivity in Liquids, pp 1-9. Plenum Press, 1980.

[smed] Smedley, Stuart I. The Interpretation of Ionic Conductivity in Liquids. Plenum Press, 1980.

[mistry] Mistry, K. H.; Hunter, H. a.; Lienhard V, J. H. Effect of composition and nonideal solution behavior on
desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013,
318, 34-47.

[kim] Kim, Hee-Talk and Frederick, William Jr, 1988. “Evaluation of Pitzer Ion Interaction Parameters of Aqueous
Electrolytes at 25 C. 1. Single Salt Parameters,” J. Chemical Engineering Data 33, pp.177-184.

[arch] Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law
Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

[may] May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

[stumm] Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed, pp 165. Wiley Interscience, 1996.

[rbs] Robinson, R. A.; Stokes, R. H. Electrolyte Solutions: Second Revised Edition; Butterworths: London, 1968,
p.32.

[mistry] Mistry, K. H.; Hunter, H. a.; Lienhard V, J. H. Effect of composition and nonideal solution behavior on
desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013,
318, 34-47.

[may] May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

63

https://www.aqion.de/site/electrical-conductivity
http://www.hydrochemistry.eu/exmpls/sc.html
http://en.wikipedia.org/wiki/Osmotic_pressure#Derivation_of_osmotic_pressure

pyEQL Documentation, Release v0.6.0

[rbs] Robinson, R. A.; Stokes, R. H. Electrolyte Solutions: Second Revised Edition; Butterworths: London, 1968,
p.32.

[mstry] Mistry, K. H.; Hunter, H. a.; Lienhard V, J. H. Effect of composition and nonideal solution behavior on
desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013,
318, 34-47.

64 Bibliography

PYTHON MODULE INDEX

p
pyEQL.activity_correction, 44
pyEQL.engines, 57
pyEQL.functions, 40
pyEQL.salt_ion_match, 43

65

pyEQL Documentation, Release v0.6.0

66 Python Module Index

INDEX

Symbols
__init__() (pyEQL.Solution method), 9
_debye_parameter_B() (in module

pyEQL.activity_correction), 44
_debye_parameter_activity() (in module

pyEQL.activity_correction), 45
_debye_parameter_osmotic() (in module

pyEQL.activity_correction), 46
_debye_parameter_volume() (in module

pyEQL.activity_correction), 46
_get_property() (pyEQL.Solution method), 22
_pitzer_B_MX() (in module

pyEQL.activity_correction), 47
_pitzer_B_phi() (in module

pyEQL.activity_correction), 48
_pitzer_f1() (in module pyEQL.activity_correction),

48
_pitzer_f2() (in module pyEQL.activity_correction),

49
_pitzer_log_gamma() (in module

pyEQL.activity_correction), 49
_sort_components() (in module

pyEQL.salt_ion_match), 44

A
add_amount() (pyEQL.Solution method), 17
add_solute() (pyEQL.Solution method), 17
add_solvent() (pyEQL.Solution method), 17
alkalinity (pyEQL.Solution property), 14
as_dict() (pyEQL.Solution method), 24
autogenerate() (in module pyEQL.functions), 40

B
bjerrum_length (pyEQL.Solution property), 15

C
charge_balance (pyEQL.Solution property), 13
conductivity (pyEQL.Solution property), 12
copy() (pyEQL.Solution method), 24

D
debye_length (pyEQL.Solution property), 14

density (pyEQL.Solution property), 11
dielectric_constant (pyEQL.Solution property), 11
donnan_eql() (in module pyEQL.functions), 40

E
entropy_mix() (in module pyEQL.functions), 41
EOS (class in pyEQL.engines), 57
equilibrate() (pyEQL.engines.EOS method), 57
equilibrate() (pyEQL.engines.IdealEOS method), 59
equilibrate() (pyEQL.engines.NativeEOS method),

59

F
from_dict() (pyEQL.Solution class method), 24

G
generate_salt_list() (in module

pyEQL.salt_ion_match), 44
get_activity() (pyEQL.Solution method), 20
get_activity_coefficient() (pyEQL.engines.EOS

method), 58
get_activity_coefficient()

(pyEQL.engines.IdealEOS method), 59
get_activity_coefficient()

(pyEQL.engines.NativeEOS method), 59
get_activity_coefficient() (pyEQL.Solution

method), 19
get_activity_coefficient_davies() (in module

pyEQL.activity_correction), 50
get_activity_coefficient_debyehuckel() (in

module pyEQL.activity_correction), 51
get_activity_coefficient_guntelberg() (in mod-

ule pyEQL.activity_correction), 51
get_activity_coefficient_pitzer() (in module

pyEQL.activity_correction), 52
get_amount() (pyEQL.Solution method), 16
get_apparent_volume_pitzer() (in module

pyEQL.activity_correction), 54
get_chemical_potential_energy()

(pyEQL.Solution method), 21
get_effective_molality()

(pyEQL.salt_ion_match.Salt method), 43

67

pyEQL Documentation, Release v0.6.0

get_lattice_distance() (pyEQL.Solution method),
23

get_mobility() (pyEQL.Solution method), 23
get_molar_conductivity() (pyEQL.Solution

method), 22
get_moles_solvent() (pyEQL.Solution method), 18
get_osmolality() (pyEQL.Solution method), 18
get_osmolarity() (pyEQL.Solution method), 18
get_osmotic_coefficient() (pyEQL.engines.EOS

method), 58
get_osmotic_coefficient()

(pyEQL.engines.IdealEOS method), 59
get_osmotic_coefficient()

(pyEQL.engines.NativeEOS method), 60
get_osmotic_coefficient() (pyEQL.Solution

method), 20
get_osmotic_coefficient_pitzer() (in module

pyEQL.activity_correction), 55
get_salt() (pyEQL.Solution method), 18
get_salt_dict() (pyEQL.Solution method), 19
get_solute_volume() (pyEQL.engines.EOS method),

58
get_solute_volume() (pyEQL.engines.IdealEOS

method), 59
get_solute_volume() (pyEQL.engines.NativeEOS

method), 61
get_total_amount() (pyEQL.Solution method), 16
get_total_moles_solute() (pyEQL.Solution

method), 17
get_transport_number() (pyEQL.Solution method),

22
get_water_activity() (pyEQL.Solution method), 20
gibbs_mix() (in module pyEQL.functions), 42

H
hardness (pyEQL.Solution property), 14

I
IdealEOS (class in pyEQL.engines), 59
identify_salt() (in module pyEQL.salt_ion_match),

44
ionic_strength (pyEQL.Solution property), 13

L
list_activities() (pyEQL.Solution method), 24
list_concentrations() (pyEQL.Solution method), 24
list_solutes() (pyEQL.Solution method), 24

M
mass (pyEQL.Solution property), 10
mix() (in module pyEQL.functions), 43
module

pyEQL.activity_correction, 44

pyEQL.engines, 57
pyEQL.functions, 40
pyEQL.salt_ion_match, 43

N
NativeEOS (class in pyEQL.engines), 59

O
osmotic_pressure (pyEQL.Solution property), 15

P
p() (pyEQL.Solution method), 10
pH (pyEQL.Solution property), 10
pressure (pyEQL.Solution property), 10
pyEQL.activity_correction

module, 44
pyEQL.engines

module, 57
pyEQL.functions

module, 40
pyEQL.salt_ion_match

module, 43

S
Salt (class in pyEQL.salt_ion_match), 43
set_amount() (pyEQL.Solution method), 17
Solution (class in pyEQL), 9
solvent_mass (pyEQL.Solution property), 10

T
temperature (pyEQL.Solution property), 10
to_json() (pyEQL.Solution method), 24

U
unsafe_hash() (pyEQL.Solution method), 24

V
validate_monty() (pyEQL.Solution class method), 25
viscosity_dynamic (pyEQL.Solution property), 11
viscosity_kinematic (pyEQL.Solution property), 12
volume (pyEQL.Solution property), 10

68 Index

	Description
	Key Features
	Installation
	Use a conda environment
	pip install
	Other dependencies
	Installing the development branch
	Manually install via Git

	Tutorial
	Creating a Solution Object
	Retrieving Solution Properties
	Bulk Solution Properties
	Individual Solute Properties

	Units-Aware Calculations using pint
	Using pyEQL in your projects

	The Solution Class
	Creating a solution
	Class reference
	Returns:
	See Also:
	See Also:
	Examples:
	Examples:

	Chemical Formulas
	How to Enter Valid Chemical Formulas
	Manually testing a formula
	Formulas you will see when using Solution

	Property Database
	Format
	The Solute class
	Searching the database
	Species included

	Contributing to pyEQL
	Reporting Issues
	Contributing Code
	Hacking pyEQL, step by step

	Guidelines
	Documentation
	Changelog

	Functions Module
	References:
	See Also:

	Internal module reference
	Salt analysis module
	Activity Correction module
	Examples:
	Examples:
	Examples:
	See Also:
	See Also:
	See Also:
	See Also:
	See Also:

	Speciation Engines module

	Bibliography
	Python Module Index
	Index

