

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyEQL 0.2.1 documentation

Welcome to pyEQL’s documentation!

	Release:	0.2.1

	Date:	September 17, 2015

Contents:

	Installation
	Dependencies

	Manually via Git

	Automatically via pip and PyPI

	Tutorial
	Creating a Solution Object

	Retrieving Solution Properties

	Units-Aware Calculations using pint

	Using pyEQL in your projects

	Contributing to pyEQL
	Reporting Issues

	Contributing Code

	Generating Test Cases

	Making a Donation

	Chemical Formulas
	Representing Chemical Substances in pyEQL

	API Documentation (chemical_formula.py)

	Database System
	Basics

	Adding your own Database Files

	Viewing the Database

	API Documentation (database.py)

	API Documentation (parameter.py)

	The Solution Class

	The Solute Class

	Internal Reference Documentation
	Activity Correction API

	Water Properties API

	Functions Module

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

Installation

Dependencies

pyEQL requires Python 3.0 or greater. For installation instructions on your system visit https://www.python.org/downloads/

In addition, you will need the following packages:

	pint [https://github.com/hgrecco/pint]

	scipy [http://scipy.org/]

See the respective pages for manual installation instructions. Alternatively, if you use pip to install pyEQL (recommended),
they should be installed automatically.

Manually via Git

Simply navigate to a directory of your choice on your computer and clone the repository by executing the following terminal command:

git clone https://github.com/rkingsbury/pyEQL

Then install by executing

pip install -e pyEQL

Automatically via pip and PyPI

The Python Package Index [https://pypi.python.org/pypi] repository will allow installation to be done easily from the command line as follows:

pip install pyEQL

This should automatically pull in the required dependencies as well.

Note

You may have to run ‘pip3’ rather than ‘pip’ depending on your system configuration. pyEQL works only on Python 3.

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

Tutorial

pyEQL creates a new type (Solution class) to represent a chemical solution.
It also comes pre-loaded with a database of diffusion coefficients, activity
correction parameters, and other data on a variety of common electrolytes.
Virtually all of the user-facing functions in pyEQL are accessed through the
Solution class.

Creating a Solution Object

Create a Solution object by invoking the Solution class:

>>> import pyEQL
>>> s1 = pyEQL.Solution()
>>> s1
<pyEQL.pyEQL.Solution at 0x7f9d188309b0>

If no arguments are specified, pyEQL creates a 1-L solution of water at
pH 7 and 25 degC.

More usefully, you can specify solutes and bulk properties:

>>> s2 = pyEQL.Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']],pH=8,temperature = '20 degC', volume='8 L')

Retrieving Solution Properties

Bulk Solution Properties

pyEQL provides a variety of methods to calculate or look up bulk properties
like temperature, ionic strength, conductivity, and density.

>>> s2.get_volume()
8.071524653929277 liter
>>> s2.get_density()
1.0182802742389558 kilogram/liter
>>> s2.get_conductivity()
4.083570230022633 siemens/meter
>>> s2.get_ionic_strength()
0.500000505903012 mole/kilogram

Individual Solute Properties

You can also retrieve properties for individual solutes (or the solvent, water)

>>> s2.get_amount('Na+','mol/L')
0.4946847550064916 mole/liter
>>> s2.get_activity_coefficient('Na+)
0.6838526233869155
>>> s2.get_activity('Na+')
0.3419263116934578
>>> s2.get_property('Na+','diffusion_coefficient')
1.1206048116287536e-05 centimeter2/second

Units-Aware Calculations using pint

pyEQL uses pint [https://github.com/hgrecco/pint] to perform units-aware calculations. The pint library creates
Quantity objects that contain both a magnitude and a unit.

>>> from pyEQL import unit
>>> test_qty = pyEQL.unit('1 kg/m**3')
1.0 kilogram/meter3

Many pyEQL methods require physical quantities to be input as strings, then these methods return pint Quantity objects.
A string quantity must contain both a magnitude and a unit (e.g. ‘0.5 mol/L’).
In general, pint recognizes common abbreviations and SI prefixes. Compound units must follow Python math syntax (e.g. cm**2 not cm2).

Pint Quantity objects have several useful attributes. They can be converted to strings:

>>> str(test_qty)
'1.0 kg/m**3'

the magnitude, units, or dimensionality can be retrieved via attributes:

>>> test_qty.magnitude
1.0
>>> test_qty.units
<UnitsContainer({'kilogram': 1.0, 'meter': -3.0})>
>>> test_qty.dimensionality
<UnitsContainer({'[length]': -3.0, '[mass]': 1.0})>

See the pint documentation [http://pint.readthedocs.org/] for more details on creating and manipulating Quantity objects.

Using pyEQL in your projects

To access pyEQL’s main features in your project all that is needed is an import statement:

>>> import pyEQL

In order to directly create Quantity objects, you need to explicitly import the unit module:

>>> from pyEQL import unit
>>> test_qty = pyEQL.unit('1 kg/m**3')
1.0 kilogram/meter3

Warning

if you use pyEQL in conjunction with another module that also uses pint for units-aware calculations, you must convert all Quantity objects to strings before passing them to the other module, as pint cannot perform mathematical operations on units that belong to different “registries.” See the pint documentation [http://pint.readthedocs.org/] for more details.

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

Contributing to pyEQL

Reporting Issues

You can report any bugs, packaging issues, feature requests, comments, or questions
using the issue tracker [https://github.com/rkingsbury/pyEQL/issues] on github [https://github.com/rsking84/pyeql].

Contributing Code

To contribute bug fixes, documentation enhancements, or new code, please
fork pyEQL and send us a pull request. It’s not as hard as it sounds!

It is strongly recommended that you read the following short articles
before starting your work, especially if you are new to the open source community.

	Open Source Contribution Etiquette [http://tirania.org/blog/archive/2010/Dec-31.html]

	Don’t “Push” Your Pull Requests [https://www.igvita.com/2011/12/19/dont-push-your-pull-requests/]

	A Successful Git Branching Model [http://nvie.com/posts/a-successful-git-branching-model]

Hacking pyEQL in Six Easy Steps:

	Fork the pyEQL repository [https://help.github.com/articles/fork-a-repo/] on Github

	Clone your repository to a directory of your choice:

git clone https://github.com/<username>/pyEQL

	Create a branch for your work. We loosely follow the branching guidelines
outlined at http://nvie.com/posts/a-successful-git-branching-model.

If you are adding documentation or bug fixes, start with the master branch and
prefix your branch with “fix-” or “doc-” as appropriate:

git checkout -b fix-myfix master

git checkout -b doc-mydoc master

If you are adding a new feature, start with the develop branch and prefix your
branch with “feature-”:

git checkout -b feature-myfeature develop

	Hack away until you’re satisfied.

	Push your work back to Github:

git push origin feature-myfeature

	Create a pull request with your changes. See this tutorial [https://yangsu.github.io/pull-request-tutorial] for instructions.

Generating Test Cases

pyEQL has many capabilities that have not been tested thoroughly. You can help
the project simply by using pyEQL and comparing the output to experimental data
and/or more established models. Report back your results on the
issue tracker [https://github.com/rkingsbury/pyEQL/issues].

Even better, write up an automated test case (see the tests/ directory for examples).

Making a Donation

If you’d like to leave a ‘tip’ for the project maintainer to support the time and effort
required to develop pyEQL, simply send it via Paypal to RyanSKingsbury@alumni.unc.edu

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

Chemical Formulas

Representing Chemical Substances in pyEQL

pyEQL interprets the chemical formula of a substance to calculate its molecular
weight and formal charge. The formula is also used as a key to search the
database for parameters (e.g. diffusion coefficient) that are used in subsequent
calculations.

How to Enter Valid Chemical Formulas

Generally speaking, type the chemical formula of your solute the “normal” way
and pyEQL should be able to inerpret it. Here are some examples:

	Sodium Chloride - NaCl

	Sodium Sulfate - Na(SO4)2

	Methanol - CH4OH or CH5O

	Magnesium Ion - Mg+2

	Chloride Ion - Cl-

Formula Rules:

	Are composed of valid atomic symbols that start with capital letters

	Contain no non-alphanumeric characters other than ‘(‘, ‘)’, ‘+’, or ‘-‘

	If a ‘+’ or ‘-‘ is present, the formula must contain ONLY ‘+’ or ‘-‘
(e.g. ‘Na+-‘ is invalid) and the formula must end with either a series of
charges (e.g. ‘Fe+++’) or a numeric charge (e.g. ‘Fe+3’)

	Formula must contain matching numbers of ‘(‘ and ‘)’

	Open parentheses must precede closed parentheses

Alternate Formulas and Isomers

Many complex molecules can be written in multiple ways. pyEQL cares only about
the number and identity of the elements and the formal charge on the molecule,
so you can use any form you choose. The hill_order() method takes a formula
and reduces it to its simplest form, like so:

>>> pyEQL.chemical_formula.hill_order('CH2(CH3)4COOH')
'C6H15O2'

When searching the parameters database, pyEQL uses this method to reduce
both user-entered formulas AND keys in the database. So even if you created
a solution containing ‘ClNa’, pyEQL would still match it with parameters for
‘NaCl’.

Currently pyEQL does not distinguish between isomers.

API Documentation (chemical_formula.py)

This module contains classes, functions, and methods to facilitate the
input, output, and parsing of chemical formulas for pyEQL.

The correct case must be used when specifying elements.

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
pyEQL.chemical_formula.get_element_names(formula)

	Return the names of the elements in a chemical formula

	Parameters:	formula: str

String representing a chemical formula

Examples

>>> get_element_names('FeSO4')
['Iron', 'Sulfur', 'Oxygen']

	
pyEQL.chemical_formula.get_element_numbers(formula)

	Return the atomic numbers of the elements in a chemical formula

	Parameters:	formula: str

String representing a chemical formula

Examples

>>> get_element_numbers('FeSO4')
[26, 16, 8]

	
pyEQL.chemical_formula.get_elements(formula)

	Return a list of strings representing the elements in a
molecular formula, with no duplicates.

See also

_check_formula

Examples

>>> get_elements('FeSO4')
['Fe', 'S', 'O']
>>> get_elements('CH3(CH2)4(CO)3')
['C', 'H', 'O']

	
pyEQL.chemical_formula.get_formal_charge(formula)

	Return the formal charge on a molecule based on its formula

See also

_check_formula

Examples

>>> get_formal_charge('Na+')
1
>>> get_formal_charge('PO4-3')
-3
>>> get_formal_charge('Fe+++')
3

	
pyEQL.chemical_formula.get_molecular_weight(formula)

	compute the molecular weight of a formula

>>> get_molecular_weight('Na+')
22.98977
>>> get_molecular_weight('H2O')
18.01528
>>> get_molecular_weight('CH3CH2CH3')
44.09562

See also

_consolidate_formula, elements

	
pyEQL.chemical_formula.hill_order(formula)

	Return a string representing the simplest form of ‘formula’
in the Hill order (Carbon, Hydrgen, then other elements
in alphabetical order). If no Carbon is present, then
all elements are listed in alphabetical order.

NOTE: this function does NOT (yet) honor exceptions to the Hill Order
for acids, hydroxides, oxides, and ionic compounds. It follows the
rule above no matter what.

Examples

>>> hill_order('CH2(CH3)4COOH')
'C6H15O2'

>>> hill_order('NaCl')
'ClNa'

>>> hill_order('NaHCO2') == hill_order('HCOONa')
True

>>> hill_order('Fe+2') == hill_order('Fe+3')
False

	
pyEQL.chemical_formula.is_valid_element(formula)

	Check whether a string is a valid atomic symbol

	Parameters:	:formula: str

String representing an atomic symbol. First letter must be
uppercase, second letter must be lowercase.

	Returns:	bool

True if the string is a valid atomic symbol. False otherwise.

Examples

>>> is_valid_element('Cu')
True
>>> is_valid_element('Na+')
False

	
pyEQL.chemical_formula.is_valid_formula(formula)

	Check that a molecular formula is formatted correctly

	Parameters:	formula: str

String representing a molecular formula. e.g. ‘H2O’ or ‘FeOH+’
Valid molecular formulas must meet the following criteria:

	Are composed of valid atomic symbols that start with capital letters

	Contain no non-alphanumeric characters other than ‘(‘, ‘)’,
‘+’, or ‘-‘

	If a ‘+’ or ‘-‘ is present, the formula must contain ONLY ‘+’ or
‘-‘ (e.g. ‘Na+-‘ is invalid) and the formula must end with either
a series of charges (e.g. ‘Fe+++’) or a numeric charge (e.g. ‘Fe+3’)

	Formula must contain matching numbers of ‘(‘ and ‘)’

	Open parentheses must precede closed parentheses

	Returns:	bool

True if the formula is valid. False otherwise.

Examples

>>> is_valid_formula('Fe2(SO4)3')
True
>>> is_valid_formula('2Na+')
False
>>> is_valid_formula('HCO3-')
True
>>> is_valid_formula('Na+-')
False
>>> is_valid_formula('C10h12')
False

	
pyEQL.chemical_formula.print_latex(formula)

	Print a LaTeX - formatted version of the formula

Examples

>>> print_latex('Fe2SO4')
Fe_2SO_4
>>> print_latex('CH3CH2CH3')
CH_3CH_2CH_3
>>> print_latex('Fe2(OH)2+2')
Fe_2(OH)_2^+^2

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

Database System

pyEQL creates a database to collect various parameters needed to perform
it’s calculations. pyEQL’s default database includes a collection of the
following parameters for some common electrolytes:

	Diffusion coefficients for 104 ions

	Pitzer model activity correction coefficients for 157 salts

	Pitzer model partial molar volume coefficients for 120 salts

	Partial molar volumes for 10 ions (see note)

	Viscosity model coefficients for 6 salts (see note)

Note

Due to copyright restrictions, pyEQL’s built-in databases contain only a small selection of partial molar volumes and viscosity coefficients for some common ions like H+, Na+, Cl-, and OH-. We are working on securing permission to distribute a more complete dataset. In the mean time, see the references in the example databases for good data sources. Alternatively, you can provide your own parameters in a custom database (see below). pyEQL does already contain a fairly large collection of Pitzer parameters for both activity correction and partial molar volume; and this will be expanded in the future.

Basics

The Paramsdb class creates a container for parameters. Each paramter
is an object which contains not only the value, but also information about
the units, the reference, and the conditions of measurement. paramsdb() also
defines several methods that are helpful for retrieving parameters.

pyEQL automatically initializes an instance of Paramsdb under the name ‘db’.
You can access database methods like this:

>>> import pyEQL
>>> pyEQL.db
<pyEQL.database.Paramsdb at 0x7fead183f240>
>>> pyEQL.db.has_species('H+')
True

Anytime a new solute is added to a solution, the search_parameters() method
is called. This method searches every database file within the search path
(by default, only pyEQL’s built-in databases) for any parameters associated
with that solute, and adds them to the database.

Adding your own Database Files

Custom Search Paths

The database system is meant to be easily extensible. To include your own
parameters, first you need to add a directory of your choosing to the
search path.

>>> pyEQL.db.add_path('/home/user')

You can always check to see which paths pyEQL is searching by using list_path():

>>> pyEQL.db.list_path()
<default installation directory>/database
/home/user

Then, place your custom database file inside that directory. NOTE: custom
database files are searched IN ADDITION TO the default databases. You don’t
need to re-create the information from the built-in files. Custom databases
only need to contain extra parameters that are not included already.

File Format

Databases are formatted as TAB-SEPARATED text files and carry the .tsv extension.
The intent of this format is to make database files easy to edit with common
spreadsheet software.

Warning

If you open an existing or template database file for editing, some spreadsheet software will try to replace the tabs with commas when you save it again. pyEQL does NOT read comma-separated files.

Since pyEQL compiles the database from multiple files, the intent is for each
file to contain values for one type of parameter (such as a diffusion coefficient)
from one source. The file can then list values of that parameter for a number of
different solutes.

The upper section of each file contains information about the source of the
data, the units, the name of the parameter, and the conditions of measurement.
The top of each database file must, at a minimum, contain rows for ‘Name’ and ‘Units’.
Preferably, other information such as conditions, notes and a reference are also supplied.
See template.tsv in the database subdirectory for an example.

The remainder of the file contains solute formulas in the first column (see
Chemical Formulas) and corresponding values of the parameter in the following columns.
Sets of parameters (such as activity correction coefficients) can be specified
by using more than one column.

Warning

Currently there is no way to handle duplicated parameters. So if you supply a parameter with the same name as a built-in one, unexpected behavior may result.

Special Names

The name of a parameter is used as a kind of index within pyEQL. Certain methods
expect certain parameter names. The following are the currently-used internal
names:

	‘diffusion_coefficient’ - diffusion coefficient

	‘pitzer_parameters_activity’ - coefficients for the Pitzer model for activity correction

	‘pitzer_parameters_volume’- coefficients for the Pitzer model for partial molar volume

	‘erying_viscosity_coefficients’ - coefficients for an Erying-type viscosity correction model

	‘partial_molar_volume’- the partial molar volume (used if Pitzer parameters are not available)

If you wish to supply these paramaters for a custom solute not included in the built-in
database, make sure to format the name exactly the same way.

You can also specify a custom parameter name, and retrieve it using the get_parameter()
method. If the solute is ‘Na+’

>>> pyEQL.db.get_parameter('Na+','my_parameter_name')

Viewing the Database

You can view the entire contents of the database using the print_database() method.
Since pyEQL searches for parameters as they are added, the database will only
contain parameters for solutes that have actually been used during the execution
of your script. The output is organized by solute.

>>> pyEQL.db.print_database()

>>> s1 = pyEQL.Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']])
>>> pyEQL.db.print_database()
Parameters for species Cl-:

Parameter diffusion_coefficient
Diffusion Coefficient

Value: 2.032e-05 cm²/s
Conditions (T,P,Ionic Strength): 25 celsius, 1 atm, 0
Notes: For most ions, increases 2-3% per degree above 25C
Reference: CRC Handbook of Chemistry and Physics, 92nd Ed., pp. 5-77 to 5-79

Parameter partial_molar_volume
Partial molar volume

Value: 21.6 cm³/mol
Conditions (T,P,Ionic Strength): 25 celsius, 1 atm, 0
Notes: correction factor 5e-4 cm3/g-K
Reference: Durchschlag, H., Zipper, P., 1994. "Calculation of the Partial Molal Volume of Organic Compounds and Polymers." Progress in Colloid & Polymer Science (94), 20-39.
...

API Documentation (database.py)

This module contains classes, functions, and methods for reading input files
and assembling database entries for use by pyEQL.

By default, pyEQL searches all files in the /database subdirectory for parameters.

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
class pyEQL.database.Paramsdb

	create a global dictionary to contain a dynamically-generated list of Parameters
for solute species. The dictionary keys are the individual chemical species
formulas. The dictionary’s values are a python set object containing all parameters
that apply to the species.

Methods

	add_parameter(formula,parameter)
	Add a parameter to the database

	add_path(path)
	Add a user-defined directory to the database search path

	get_parameter(formula,name)
	Retrieve a parameter from the database

	has_parameter(formula,name)
	Boolean test to determine whether a parameter exists in the database for a given species

	has_species(formula)
	Boolean test to determine whether a species is present in the database

	list_path()
	List all search paths for database files

	print_database()
	Function to generate a human-friendly summary of all the database parameters

	search_parameters(formula)
	Each time a new solute species is created in a solution, this function:

	
add_parameter(formula, parameter)

	Add a parameter to the database

	
add_path(path)

	Add a user-defined directory to the database search path

	
get_parameter(formula, name)

	Retrieve a parameter from the database

	
has_parameter(formula, name)

	Boolean test to determine whether a parameter exists in the database for a given species

	
has_species(formula)

	Boolean test to determine whether a species is present in the database

	
list_path()

	List all search paths for database files

	
print_database()

	Function to generate a human-friendly summary of all the database parameters
that are actually used in the simulation

	
search_parameters(formula)

	Each time a new solute species is created in a solution, this function:

1) searches to see whether a list of parameters for the species has already been
compiled from the database
2) searches all files in the specified database directory(ies) for the species
3) creates a Parameter object for each value found
4) compiles these objects into a set
5) adds the set to a dictionary indexed by species name (formula)
6) points the new solute object to the dictionary

	formula : str

	String representing the chemical formula of the species.

API Documentation (parameter.py)

This module implements the Parameter() class, which is used to store
values, units, uncertainties, and reference data for various quantities
used throughout pyEQL.

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
class pyEQL.parameter.Parameter(name, magnitude, units='', **kwargs)

	Class for storing and retrieving measured parameter values together with their
units, context, and reference information.

Some pyEQL functions search for specific parameter names, such as:
diffusion_coefficient

Methods

	get_dimensions()
	Return the dimensions of the parameter.

	get_magnitude([temperature,pressure,...])
	Return the magnitude of a parameter at the specified conditions.

	get_name()
	Return the name of the parameter.

	get_units()
	Return the units of a parameter

	get_value([temperature,pressure,...])
	Return the value of a parameter at the specified conditions.

	
get_dimensions()

	Return the dimensions of the parameter.

	
get_magnitude(temperature=None, pressure=None, ionic_strength=None)

	Return the magnitude of a parameter at the specified conditions.

	Parameters:	temperature : str, optional

The temperature at which ‘magnitude’ was measured in degrees Celsius.
Specify the temperature as a string containing the magnitude and
a unit, e.g. ‘25 degC’, ‘32 degF’, ‘298 kelvin’, and ‘500 degR’

pressure : str, optional

The pressure at which ‘magnitude’ was measured in Pascals
Specify the pressure as a string containing the magnitude and a
unit. e.g. ‘101 kPa’.
Typical valid units are ‘Pa’, ‘atm’, or ‘torr’.

ionic_strength : str, optional

The ionic strength of the solution in which ‘magnitude’ was measured. Specify
the ionic strength as a string containing the magnitude and a unit. e.g. ‘2 mol/kg’

	Returns:	Number

The magnitude of the parameter at the specified conditions.

	
get_name()

	Return the name of the parameter.

	Parameters:	None

	Returns:	str

The name of the parameter

	
get_units()

	Return the units of a parameter

	
get_value(temperature=None, pressure=None, ionic_strength=None)

	Return the value of a parameter at the specified conditions.

	Parameters:	temperature : str, optional

The temperature at which ‘magnitude’ was measured in degrees Celsius.
Specify the temperature as a string containing the magnitude and
a unit, e.g. ‘25 degC’, ‘32 degF’, ‘298 kelvin’, and ‘500 degR’

pressure : str, optional

The pressure at which ‘magnitude’ was measured in Pascals
Specify the pressure as a string containing the magnitude and a
unit. e.g. ‘101 kPa’.
Typical valid units are ‘Pa’, ‘atm’, or ‘torr’.

ionic_strength : str, optional

The ionic strength of the solution in which ‘magnitude’ was measured. Specify
the ionic strength as a string containing the magnitude and a unit. e.g. ‘2 mol/kg’

	Returns:	Quantity

The value of the parameter at the specified conditions.

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

The Solution Class

pyEQL Solution Class

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
class pyEQL.solution.Solution(solutes=[], **kwargs)

	Class representing the properties of a solution. Instances of this class
contain information about the solutes, solvent, and bulk properties.

	Parameters:	solutes : list of lists, optional

See add_solute() documentation for formatting of this list.
Defaults to empty (pure solvent) if omitted

volume : str, optional

Volume of the solvent, including the unit. Defaults to ‘1 L’ if omitted.
Note that the total solution volume will be computed using partial molar
volumes of the respective solutes as they are added to the solution.

temperature : str, optional

The solution temperature, including the unit. Defaults to ‘25 degC’ if omitted.

pressure : Quantity, optional

The ambient pressure of the solution, including the unit.
Defaults to ‘1 atm’ if omitted.

pH : number, optional

Negative log of H+ activity. If omitted, the solution will be
initialized to pH 7 (neutral) with appropriate quantities of
H+ and OH- ions

	Returns:	Solution

A Solution object.

See also

add_solute

Examples

>>> s1 = pyEQL.Solution([['Na+','1 mol/L'],['Cl-','1 mol/L']],temperature='20 degC',volume='500 mL')
>>> print(s1)
Components:
['H2O', 'Cl-', 'H+', 'OH-', 'Na+']
Volume: 0.5 l
Density: 1.0383030844030992 kg/l

Methods

	add_amount(solute,amount)
	Add the amount of ‘solute’ to the parent solution.

	add_solute(formula,amount[,parameters])
	Primary method for adding substances to a pyEQL solution

	add_solvent(formula,amount)
	Same as add_solute but omits the need to pass solvent mass to pint

	copy()
	Return a copy of the solution

	get_activity(solute)
	Return the thermodynamic activity of the solute in solution

	get_activity_coefficient(solute)
	Routine to determine the activity coefficient of a solute in solution.

	get_amount(solute,units)
	Return the amount of ‘solute’ in the parent solution

	get_chemical_potential_energy([...])
	Return the total chemical potential energy of a solution (not including

	get_conductivity()
	Compute the electrical conductivity of the solution.

	get_debye_length()
	Return the Debye length of a solution

	get_density()
	Return the density of the solution.

	get_ionic_strength()
	Return the ionic strength of the solution.

	get_lattice_distance(solute)
	Calculate the average distance between molecules

	get_mass()
	Return the total mass of the solution.

	get_mole_fraction(solute)
	Return the mole fraction of ‘solute’ in the solution

	get_moles_solvent()
	Return the moles of solvent present in the solution

	get_osmotic_coefficient()
	Calculate the osmotic coefficient

	get_osmotic_pressure()
	Return the osmotic pressure of the solution relative to pure water

	get_pressure()
	Return the hydrostatic pressure of the solution.

	get_property(solute,name)
	Retrieve a thermodynamic property (such as diffusion coefficient)

	get_salt()
	Match ions in the solution to a parent salt.

	get_solute(i)
	Return the specified solute object.

	get_solvent()
	Return the solvent object.

	get_solvent_mass()
	Return the mass of the solvent.

	get_temperature()
	Return the temperature of the solution.

	get_total_moles_solute()
	Return the total moles of all solute in the solution

	get_transport_number(solute[,...])
	Calculate the transport number of the solute in the solution

	get_viscosity_dynamic()
	Return the dynamic (absolute) viscosity of the solution.

	get_viscosity_kinematic()
	Return the kinematic viscosity of the solution.

	get_viscosity_relative()
	Return the viscosity of the solution relative to that of water

	get_volume()
	Return the volume of the solution.

	get_water_activity()
	Return the water activity

	list_activities()
	List the activity of each species in a solution.

	list_concentrations([unit])
	List the concentration of each species in a solution.

	list_solutes()
	List all the solutes in the solution.

	p(solute[,activity])
	Return the negative log of the activity of solute.

	set_amount(solute,amount)
	Set the amount of ‘solute’ in the parent solution.

	set_pressure(pressure)
	Set the hydrostatic pressure of the solution.

	set_temperature(temperature)
	Set the solution temperature.

	set_volume(volume)
	Change the total solution volume to volume, while preserving

	
add_amount(solute, amount)

	Add the amount of ‘solute’ to the parent solution.

	Parameters:	solute : str

String representing the name of the solute of interest

amount : str quantity

String representing the concentration desired, e.g. ‘1 mol/kg’
If the units are given on a per-volume basis, the solution
volume is not recalculated
If the units are given on a mass, substance, per-mass, or
per-substance basis, then the solution volume is recalculated
based on the new composition

	Returns:	Nothing. The concentration of solute is modified.

See also

Solute.add_moles

	
add_solute(formula, amount, parameters={})

	Primary method for adding substances to a pyEQL solution

	Parameters:	formula : str

Chemical formula for the solute.
Charged species must contain a + or - and (for polyvalent solutes) a number representing the net charge (e.g. ‘SO4-2’).

amount : str

The amount of substance in the specified unit system. The string should contain both a quantity and
a pint-compatible representation of a unit. e.g. ‘5 mol/kg’ or ‘0.1 g/L’

parameters : dictionary, optional

Dictionary of custom parameters, such as diffusion coefficients, transport numbers, etc. Specify parameters as key:value pairs separated by commas within curly braces, e.g. {diffusion_coeff:5e-10,transport_number:0.8}. The ‘key’ is the name that will be used to access the parameter, the value is its value.

	
add_solvent(formula, amount)

	Same as add_solute but omits the need to pass solvent mass to pint

	
copy()

	Return a copy of the solution

TODO - clarify whether this is a deep or shallow copy

	
get_activity(solute)

	Return the thermodynamic activity of the solute in solution

	Parameters:	solute : str

String representing the name of the solute of interest

temperature : Quantity, optional

The temperature of the solution. Defaults to 25 degrees C if omitted

	Returns:	The thermodynamic activity of the solute in question (dimensionless)

See also

get_activity_coefficient, get_ionic_strength

Notes

The thermodynamic activity is independent of the concentration scale used. However,
the concentration and the activity coefficient must use corresponding scales. [1] [2]
In this module, ionic strength, activity coefficients, and activities are all
calculated based on the molal (mol/kg) concentration scale.

References

	[1]	http://adsorption.org/awm/utils/Activity.htm

	[2]	http://en.wikipedia.org/wiki/Thermodynamic_activity#Activity_coefficient

	
get_activity_coefficient(solute)

	Routine to determine the activity coefficient of a solute in solution. The correct function is chosen based on the ionic strength of the parent solution.

	Parameters:	solute : str

String representing the name of the solute of interest

	Returns:	The molal (mol/kg) scale mean ion activity coefficient of the solute in question

See also

get_activity_coefficient_debyehuckel, get_activity_coefficient_guntelberg, get_activity_coefficient_davies, get_activity_coefficient_pitzer

	
get_amount(solute, units)

	Return the amount of ‘solute’ in the parent solution

	Parameters:	solute : str

String representing the name of the solute of interest

units : str

Units desired for the output. Examples of valid units are
‘mol/L’,’mol/kg’,’mol’, ‘kg’, and ‘g/L’
Use ‘fraction’ to return the mole fraction.

	Returns:	The amount of the solute in question, in the specified units

	
get_chemical_potential_energy(activity_correction=True)

	Return the total chemical potential energy of a solution (not including
pressure or electric effects)

	Parameters:	activity_correction : bool, optional

If True, activities will be used to calculate the true chemical
potential. If False, mole fraction will be used, resulting in
a calculation of the ideal chemical potential.

	Returns:	Quantity

The actual or ideal chemical potential energy of the solution, in Joules.

Notes

The chemical potential energy (related to the Gibbs mixing energy) is
calculated as follows: [3]

\[E = R T \sum_i n_i \ln a_i\]

or

E = R T sum_i n_i ln x_i

Where n is the number of moles of substance, T is the temperature in kelvin,
R the ideal gas constant, x the mole fraction, and a the activity of
each component.

Note that dissociated ions must be counted as separate components,
so a simple salt dissolved in water is a three component solution (cation,
anion, and water).

References

	[3]	Koga, Yoshikata, 2007. //Solution Thermodynamics and its Application to Aqueous Solutions: A differential approach.// Elsevier, 2007, pp. 23-37.

	
get_conductivity()

	Compute the electrical conductivity of the solution.

	Parameters:	None

	Returns:	Quantity

The electrical conductivity of the solution in Siemens / meter.

See also

get_ionic_strength, get_molar_conductivity, get_activity_coefficient

Notes

Conductivity is calculated by summing the molar conductivities of the respective
solutes, but they are activity-corrected and adjusted using an empricial exponent.
This approach is used in PHREEQC and Aqion models [4] [5]

\[EC = {F^2 \over R T} \sum_i D_i z_i ^ 2 \gamma_i ^ {\alpha} m_i\]

Where:

\[\begin{split}\alpha = \begin{cases} {0.6 \over \sqrt{|z_i|}} & {I < 0.36|z_i|} \\ {\sqrt{I} \over |z_i|} & otherwise \end{cases}\end{split}\]

Note: PHREEQC uses the molal rather than molar concentration according to
http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/phreeqc3-html/phreeqc3-43.htm

References

	[4]	http://www.aqion.de/site/77

	[5]	http://www.hydrochemistry.eu/exmpls/sc.html

	
get_debye_length()

	Return the Debye length of a solution

Debye length is calculated as [6]

\[\kappa^-1 = \sqrt({\epsilon_r \epsilon_o R T \over (2 N_A e^2 I)})\]

NOTE: The influence of ionic strength on the dielectric constant is not
currently accounted for. The dielectric constant of pure water is used
in the calculation.

	Parameters:	None

	Returns:	Quantity

The Debye length.

See also

get_ionic_strength, h2o.water_dielectric_constant

References

	[6]	https://en.wikipedia.org/wiki/Debye_length#Debye_length_in_an_electrolyte

	
get_density()

	Return the density of the solution.

Density is calculated from the mass and volume each time this method is called.

	Returns:	Quantity: The density of the solution.

	
get_ionic_strength()

	Return the ionic strength of the solution.

Return the ionic strength of the solution, calculated as 1/2 * sum (molality * charge ^2) over all the ions.
Molal (mol/kg) scale concentrations are used for compatibility with the activity correction formulas, but
the returned value does not carry units.

	Returns:	float :

The ionic strength of the parent solution, mol/kg.

Notes

The ionic strength is calculated according to:

\[I = \sum_i m_i z_i^2\]

Where m_i is the molal concentration and z_i is the charge on species i.

Examples

TODO

	
get_lattice_distance(solute)

	Calculate the average distance between molecules

Calculate the average distance between molecules of the given solute,
assuming that the molecules are uniformly distributed throughout the
solution.

	Parameters:	solute : str

String representing the name of the solute of interest

	Returns:	Quantity : The average distance between solute molecules

Notes

The lattice distance is related to the molar concentration as follows:

\[d = (C_i N_A) ^ {-{1\over3}}\]

Examples

>>> soln = Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']])
>>> soln.get_lattice_distance('Na+')
1.492964.... nanometer

	
get_mass()

	Return the total mass of the solution.

The mass is calculated each time this method is called.
Parameters
———-
None

	Returns:	Quantity: the mass of the solution, in kg

	
get_mole_fraction(solute)

	Return the mole fraction of ‘solute’ in the solution

	Parameters:	solute : str

String representing the name of the solute of interest

	Returns:	float

The mole fraction of ‘solute’ in the parent Solution object

See also

get_solvent_mass

Notes

This function assumes water is the solvent with MW = 18

Examples

TODO

	
get_moles_solvent()

	Return the moles of solvent present in the solution

	Parameters:	None

	Returns:	Quantity

The moles of solvent in the solution.

	
get_osmotic_coefficient()

	Calculate the osmotic coefficient

	Returns:	Quantity :

The osmotic coefficient

Notes

For ionic strengths below 0.5 mol/kg, the osmotic coefficient is assumed to equal 1.0.
1.0 will also be returned at higher ionic strengths if appropriate Pitzer
parameters are not supplied.

	
get_osmotic_pressure()

	Return the osmotic pressure of the solution relative to pure water

	Parameters:	None

	Returns:	Quantity

The osmotic pressure of the solution relative to pure water in Pa

Notes

Osmotic pressure is calculated based on the water activity [7] [8] :

\[\Pi = {RT \over V_w} \ln a_w\]

Where \(\Pi\) is the osmotic pressure, \(V_w\) is the partial
molar volume of water (18.2 cm**3/mol), and \(a_w\) is the water
activity.

References

	[7]	Sata, Toshikatsu. Ion Exchange Membranes: Preparation, Characterization, and Modification. Royal Society of Chemistry, 2004, p. 10.

	[8]	http://en.wikipedia.org/wiki/Osmotic_pressure#Derivation_of_osmotic_pressure

Examples

If ‘soln’ is pure water, return 0
>>> soln.get_osmotic_pressure()
0.0

If ‘soln’ is 0.5 mol/kg NaCl
>>> soln.get_osmotic_pressure()
2262808... pascal

	
get_pressure()

	Return the hydrostatic pressure of the solution.

	Returns:	Quantity: The hydrostatic pressure of the solution, in atm.

	
get_property(solute, name)

	Retrieve a thermodynamic property (such as diffusion coefficient)
for solute, and adjust it from the reference conditions to the conditions
of the solution

	Parameters:	solute: str

String representing the chemical formula of the solute species

name: str

The name of the property needed, e.g.
‘diffusion coefficient’

	Returns:	Quantity: The desired parameter

	
get_salt()

	Match ions in the solution to a parent salt.

	Parameters:	None

	Returns:	Salt

Salt object containing information about the parent salt.

See also

salt_ion_match.py

	
get_solute(i)

	Return the specified solute object.

	
get_solvent()

	Return the solvent object.

	
get_solvent_mass()

	Return the mass of the solvent.

This method is used whenever mol/kg (or similar) concentrations
are requested by get_amount()

	Parameters:	None

	Returns:	Quantity: the mass of the solvent, in kg

See also

get_amount

	
get_temperature()

	Return the temperature of the solution.

	Parameters:	None

	Returns:	Quantity: The temperature of the solution, in Kelvin.

	
get_total_moles_solute()

	Return the total moles of all solute in the solution

	
get_transport_number(solute, activity_correction=False)

	Calculate the transport number of the solute in the solution

	Parameters:	solute : str

String identifying the solute for which the transport number is
to be calculated.

activity_correction: bool

If True, the transport number will be corrected for activity following
the same method used for solution conductivity. Defaults to False
if omitted.

	Returns:	float

The transport number of solute

See also

get_conductivity

Notes

Transport number is calculated according to [9] :

\[t_i = {D_i z_i^2 C_i \over \sum D_i z_i^2 C_i}\]

Where C is the concentration in mol/L.

If activity_correction is True, the contribution of each ion to the
transport number is corrected with an activity factor. See the documentation
for get_conductivity() for an explanation of this correction.

References

	[9]	Geise, G. M.; Cassady, H. J.; Paul, D. R.; Logan, E.; Hickner, M. A. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 2014, 16, 21673–21681.

	
get_viscosity_dynamic()

	Return the dynamic (absolute) viscosity of the solution.

Calculated from the kinematic viscosity

See also

get_viscosity_kinematic, get_viscosity_relative

	
get_viscosity_kinematic()

	Return the kinematic viscosity of the solution.

See also

get_density_dynamic, get_viscosity_relative

Notes

The calculation is based on a model derived from the Eyring equation
and presented in [10]

\[\ln \nu = \ln {\nu_w MW_w \over \sum_i x_i MW_i } +
15 x_+^2 + x_+^3 \delta G^*_{123} + 3 x_+ \delta G^*_{23} (1-0.05x_+)\]

Where:

\[\delta G^*_{123} = a_o + a_1 (T)^{0.75}\]

\[\delta G^*_{23} = b_o + b_1 (T)^{0.5}\]

In which :math: nu is the kinematic viscosity, MW is the molecular weight,
x_+ is the mole fraction of cations, and T is the temperature in degrees C.

The a and b fitting parameters for a variety of common salts are included in the
database.

References

	[10]	Vásquez-Castillo, G.; Iglesias-Silva, G. a.; Hall, K. R. An extension
of the McAllister model to correlate kinematic viscosity of electrolyte solutions.
Fluid Phase Equilib. 2013, 358, 44–49.

	
get_viscosity_relative()

	Return the viscosity of the solution relative to that of water

This is calculated using a simplified form of the Jones-Dole equation:

\[\eta_{rel} = 1 + \sum_i B_i m_i\]

Where m is the molal concentration and B is an empirical parameter.

See
<http://downloads.olisystems.com/ResourceCD/TransportProperties/Viscosity-Aqueous.pdf>
<http://www.nrcresearchpress.com/doi/pdf/10.1139/v77-148>
<http://apple.csgi.unifi.it/~fratini/chen/pdf/14.pdf>

	
get_volume()

	Return the volume of the solution.

	Parameters:	None

	Returns:	Quantity: the volume of the solution, in L

	
get_water_activity()

	Return the water activity

	Returns:	float :

The thermodynamic activity of water in the solution.

Notes

Water activity is related to the osmotic coefficient in a solution containing i solutes by: [11]

\[\ln a_w = - \Phi M_w \sum_i m_i\]

Where M_w is the molar mass of water (0.018015 kg/mol) and m_i is the molal concentration
of each species.

If appropriate Pitzer model parameters are not available, the
water activity is assumed equal to the mole fraction of water.

References

	[11]	Blandamer, Mike J., Engberts, Jan B. F. N., Gleeson, Peter T., Reis, Joao Carlos R., 2005. “Activity of water in aqueous systems: A frequently neglected property.”
//Chemical Society Review// 34, 440-458.

Examples

If ‘soln’ is a 0.5 mol/kg NaCl solution at 25 degC:
>>> soln.get_water_activity()
0.9835...

If ‘soln’ is a 5.11 mol/kg NaHCO2 (sodium formate) solution at 25 degC:
(literature value from Cabot specialty fluids is 0.82)
>>> soln.get_water_activity()
0.8631...

	
list_activities()

	List the activity of each species in a solution.

	Returns:	dict

Dictionary containing a list of the species in solution paired with their activity

	
list_concentrations(unit='mol/kg')

	List the concentration of each species in a solution.

	Parameters:	unit: str

String representing the desired concentration unit.

	Returns:	dict

Dictionary containing a list of the species in solution paired with their amount in the specified units

	
list_solutes()

	List all the solutes in the solution.

	
p(solute, activity=True)

	Return the negative log of the activity of solute.

Generally used for expressing concentration of hydrogen ions (pH)

	Parameters:	solute : str

String representing the formula of the solute

activity: bool, optional

If False, the function will use the molar concentration rather
than the activity to calculate p. Defaults to True.

	Returns:	Quantity

The negative log10 of the activity (or molar concentration if
activity = False) of the solute.

Examples

TODO

	
set_amount(solute, amount)

	Set the amount of ‘solute’ in the parent solution.

	Parameters:	solute : str

String representing the name of the solute of interest

amount : str Quantity

String representing the concentration desired, e.g. ‘1 mol/kg’
If the units are given on a per-volume basis, the solution
volume is not recalculated and the molar concentrations of
other components in the solution are not altered, while the
molal concentrations are modified.

If the units are given on a mass, substance, per-mass, or
per-substance basis, then the solution volume is recalculated
based on the new composition and the molal concentrations of
other components are not altered, while the molar concentrations
are modified.

	Returns:	Nothing. The concentration of solute is modified.

See also

Solute.set_moles

	
set_pressure(pressure)

	Set the hydrostatic pressure of the solution.

	Parameters:	pressure : str

String representing the temperature, e.g. ‘25 degC’

	
set_temperature(temperature)

	Set the solution temperature.

	Parameters:	temperature : str

String representing the temperature, e.g. ‘25 degC’

	
set_volume(volume)

	Change the total solution volume to volume, while preserving
all component concentrations

	Parameters:	volume : str quantity

Total volume of the solution, including the unit, e.g. ‘1 L’

Examples

>>> mysol = Solution([['Na+','2 mol/L'],['Cl-','0.01 mol/L']],volume='500 mL')
>>> print(mysol.get_volume())
0.5000883925072983 l
>>> mysol.list_concentrations()
{'H2O': '55.508435061791985 mol/kg', 'Cl-': '0.00992937605907076 mol/kg', 'Na+': '2.0059345573880325 mol/kg'}
>>> mysol.set_volume('200 mL')
>>> print(mysol.get_volume())
0.2 l
>>> mysol.list_concentrations()
{'H2O': '55.50843506179199 mol/kg', 'Cl-': '0.00992937605907076 mol/kg', 'Na+': '2.0059345573880325 mol/kg'}

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

The Solute Class

pyEQL solute class

This file contains functions and methods for managing properties of
individual solutes

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
class pyEQL.solute.Solute(formula, amount, volume, solvent_mass, parameters={})

	represent each chemical species as an object containing its formal charge,
transport numbers, concentration, activity, etc.

Methods

	add_moles(amount,volume,solvent_mass)
	Increase or decrease the amount of a substance present in the solution

	add_parameter(name,magnitude[,units])
	Add a parameter to the parameters database for a solute

	get_formal_charge()
	Return the formal charge of the solute

	get_mobility([temperature])
	Calculate the ionic mobility of the solute

	get_molar_conductivity([temperature])
	Calculate the molar (equivalent) conductivity for a solute

	get_molecular_weight()
	Return the molecular weight of the solute

	get_moles()
	Return the moles of solute in the solution

	get_name()
	Return the name (formula) of the solute

	get_parameter(parameter[,temperature,...])
	Return the value of the parameter named ‘parameter’

	set_moles(amount,volume,solvent_mass)
	Set the amount of a substance present in the solution

	
add_moles(amount, volume, solvent_mass)

	Increase or decrease the amount of a substance present in the solution

	Parameters:	amount: str quantity

Amount of substance to add. Must be in mass or substance units.
Negative values indicate subtraction of material.

	
add_parameter(name, magnitude, units='', **kwargs)

	Add a parameter to the parameters database for a solute

See pyEQL.parameters documentation for a description of the arguments

	
get_formal_charge()

	Return the formal charge of the solute

	Parameters:	None

	Returns:	int

The formal charge of the solute

	
get_mobility(temperature=<Quantity(25, 'degC')>)

	Calculate the ionic mobility of the solute

	Parameters:	temperature : Quantity, optional

The temperature of the parent solution. Defaults to 25 degC if omitted.

	Returns:	float : the ionic mobility

Notes

This function uses the Einstein relation to convert a diffusion coefficient
into an ionic mobility [1]

\[\mu_i = {F |z_i| D_i \over RT}\]

References

	[1]	Smedley, Stuart I. The Interpretation of Ionic Conductivity in Liquids. Plenum Press, 1980.

	
get_molar_conductivity(temperature=<Quantity(25, 'degC')>)

	Calculate the molar (equivalent) conductivity for a solute

	Parameters:	temperature : Quantity, optional

The temperature of the parent solution. Defaults to 25 degC if omitted.

	Returns:	float

The molar or equivalent conductivity of the species at infinte dilution.

Notes

Molar conductivity is calculated from the Nernst-Einstein relation [2]

\[\kappa_i = {z_i^2 D_i F^2 \over RT}\]

Note that the diffusion coefficient is strongly variable with temperature.

References

	[2]	Smedley, Stuart. The Interpretation of Ionic Conductivity in Liquids, pp 1-9. Plenum Press, 1980.

Examples

TODO

	
get_molecular_weight()

	Return the molecular weight of the solute

	Parameters:	None

	Returns:	Quantity

The molecular weight of the solute, in g/mol

	
get_moles()

	Return the moles of solute in the solution

	Parameters:	None

	Returns:	Quantity

The number of moles of solute

	
get_name()

	Return the name (formula) of the solute

	Parameters:	None

	Returns:	str

The chemical formula of the solute

	
get_parameter(parameter, temperature=None, pressure=None, ionic_strength=None)

	Return the value of the parameter named ‘parameter’

	
set_moles(amount, volume, solvent_mass)

	Set the amount of a substance present in the solution

	Parameters:	amount: str quantity

Desired amount of substance. Must be greater than or equal to
zero and given in mass or substance units.

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyEQL 0.2.1 documentation

Internal Reference Documentation

Activity Correction API

pyEQL activity correction library

This file contains functions for computing molal-scale activity coefficients
of ions and salts in aqueous solution.

Individual functions for activity coefficients are defined here so that they
can be used independently of a pyEQL solution object. Normally, these functions
are called from within the get_activity_coefficient method of the Solution class.

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
pyEQL.activity_correction._debye_parameter_B(temperature='25 degC')

	Return the constant B used in the extended Debye-Huckel equation

	Parameters:	temperature : str Quantity, optional

String representing the temperature of the solution. Defaults to ‘25 degC’ if not specified.

Notes

The parameter B is equal to: [1]

\[B = ({8 \pi N_A e^2 \over 1000 \epsilon k T}) ^ {1 \over 2}\]

	[1]	Bockris and Reddy. /Modern Electrochemistry/, vol 1. Plenum/Rosetta, 1977, p.210.

Examples

>>> _debye_parameter_B()
0.3291...

	
pyEQL.activity_correction._debye_parameter_activity(temperature='25 degC')

	Return the constant A for use in the Debye-Huckel limiting law (base 10)

	Parameters:	temperature : str Quantity, optional

String representing the temperature of the solution. Defaults to ‘25 degC’ if not specified.

	Returns:	Quantity The parameter A for use in the Debye-Huckel limiting law (base e)

See also

_debye_parameter_osmotic

Notes

The parameter A is equal to: [2]

\[A^{\gamma} = {e^3 (2 \pi N_A {\rho})^{0.5} \over (4 \pi \epsilon_o \epsilon_r k T)^{1.5}}\]

Note that this equation returns the parameter value that can be used to calculate
the natural logarithm of the activity coefficient. For base 10, divide the
value returned by 2.303. The value is often given in base 10 terms (0.509 at
25 degC) in older textbooks.

References

	[2]	Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

Examples

>>> _debye_parameter_activity()
1.17499...

	
pyEQL.activity_correction._debye_parameter_osmotic(temperature='25 degC')

	Return the constant A_phi for use in calculating the osmotic coefficient according to Debye-Huckel theory

	Parameters:	temperature : str Quantity, optional

String representing the temperature of the solution. Defaults to ‘25 degC’ if not specified.

See also

_debye_parameter_activity

Notes

Not to be confused with the Debye-Huckel constant used for activity coefficients in the limiting law.
Takes the value 0.392 at 25 C.
This constant is calculated according to: [3] [4]

\[A^{\phi} = {1 \over 3} A^{\gamma}\]

References

	[3]	Kim, Hee-Talk and Frederick, William Jr, 1988. “Evaluation of Pitzer Ion Interaction Parameters of Aqueous Electrolytes at 25 C. 1. Single Salt Parameters,”
//J. Chemical Engineering Data// 33, pp.177-184.

	[4]	Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

Examples

>>> _debye_parameter_osmotic()
0.3916...

	
pyEQL.activity_correction._debye_parameter_volume(temperature='25 degC')

	Return the constant A_V, the Debye-Huckel limiting slope for apparent
molar volume.

	Parameters:	temperature : str Quantity, optional

String representing the temperature of the solution. Defaults to ‘25 degC’ if not specified.

See also

_debye_parameter_osmotic

Notes

Takes the value 1.8305 cm ** 3 * kg ** 0.5 / mol ** 1.5 at 25 C.
This constant is calculated according to: [5]

\[A_V = -2 A_{\phi} R T [{3 \over \epsilon} {{\partial \epsilon \over \partial p} } - {{1 \over \rho}{\partial \rho \over \partial p} }]\]

NOTE: at this time, the term in brackets (containing the partial derivatives) is approximate.
These approximations give the correct value of the slope at 25 degC and
produce estimates with less than 10% error between 0 and 60 degC.

The derivative of epsilon with respect to pressure is assumed constant (for atmospheric pressure)
at -0.01275 1/MPa. Note that the negative sign does not make sense in light
of real data, but is required to give the correct result.

The second term is equivalent to the inverse of the bulk modulus of water, which
is taken to be 2.2 GPa. [6]

References

	[5]	Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

	[6]	http://hyperphysics.phy-astr.gsu.edu/hbase/permot3.html

Examples

TODO

	
pyEQL.activity_correction._pitzer_B_MX(ionic_strength, alpha1, alpha2, beta0, beta1, beta2)

	Return the B_MX coefficient for the Pitzer ion interaction model.

\[B_MX = \beta_0 + \beta_1 f1(\alpha_1 I ^ {0.5}) + \beta_2 f2(\alpha_2 I ^ {0.5})\]

	Parameters:	ionic_strength: number

The ionic strength of the parent solution, mol/kg

alpha1, alpha2: number

Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

beta0, beta1, beta2: number

Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

	Returns:	float

The B_MX parameter for the Pitzer ion interaction model.

See also

_pitzer_f1

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly
Salinary Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+.
/Journal of Chemical& Engineering Data (57), p. 1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree C. 1. Single salt parameters.
Journal of Chemical and Engineering Data, (2), 177–184.

	
pyEQL.activity_correction._pitzer_B_phi(ionic_strength, alpha1, alpha2, beta0, beta1, beta2)

	Return the B^Phi coefficient for the Pitzer ion interaction model.

\[B^\Phi = \beta_0 + \beta1 \exp(-\alpha_1 I ^{0.5}) + \beta_2 \exp(-\alpha_2 I ^ {0.5})\]

or

\[B^\Phi = B^\gamma - B_{MX}\]

	Parameters:	ionic_strength: number

The ionic strength of the parent solution, mol/kg

alpha1, alpha2: number

Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

beta0, beta1, beta2: number

Coefficients for the Pitzer model. These ion-interaction parameters are
specific to each salt system.

	Returns:	float

The B^Phi parameter for the Pitzer ion interaction model.

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly
Salinary Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+.
/Journal of Chemical& Engineering Data (57), p. 1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree C. 1. Single salt parameters.
Journal of Chemical and Engineering Data, (2), 177–184.

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from 278 to 308 K
and Representation with an Ion Interaction (Pitzer) Model.
Journal of Chemical & Engineering Data, 55(2), 830–838. doi:10.1021/je900487a

	
pyEQL.activity_correction._pitzer_f1(x)

	

 Functions Module

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyEQL 0.2.1 documentation

Functions Module

pyEQL functions that take Solution objects as inputs or return Solution objects

	copyright:	2013-2015 by Ryan S. Kingsbury

	license:	LGPL, see LICENSE for more details.

	
pyEQL.functions.donnan_eql(solution, fixed_charge)

	Return a solution object in equilibrium with fixed_charge

	Parameters:	Solution : Solution object

The external solution to be brought into equilibrium with the fixed
charges

fixed_charge : str quantity

String representing the concentration of fixed charges, including sign.
May be specified in mol/L or mol/kg units. e.g. ‘1 mol/kg’

	Returns:	Solution

A solution that has established Donnan equilibrium with the external
(input) Solution

See also

get_salt

Notes

The general equation representing the equilibrium between an external
electrolyte solution and an ion-exchange medium containing fixed charges
is:[1]

\[{a_- \over \bar a_-}^{1 \over z_-} {\bar a_+ \over a_+}^{1 \over z_+} = exp({\Delta \pi \bar V \over {RT z_+ \nu_+}})\]

Where subscripts + and - indicate the cation and anion, respectively,
the overbar indicates the membrane phase,
a represents activity, z represents charge, nu represents the stoichiometric
coefficient, V represents the partial molar volume of the salt, and
delta pi is the difference in osmotic pressure between the membrane and the
solution phase.

In addition, electroneutrality must prevail within the membrane phase:

\[\bar C_+ z_+ + \bar X + \bar C_- z_- = 0\]

Where C represents concentration and X is the fixed charge concentration
in the membrane or ion exchange phase.

This function solves these two equations simultaneously to arrive at the
concentrations of the cation and anion in the membrane phase. It returns
a solution equal to the input solution except that the concentrations of
the predominant cation and anion have been adjusted according to this
equilibrium.

NOTE that this treatment is only capable of equilibrating a single salt.
This salt is identified by the get_salt() method.

References

	[1]	Strathmann, Heiner, ed. //Membrane Science and Technology// vol. 9, 2004. Chapter 2, p. 51. http://dx.doi.org/10.1016/S0927-5193(04)80033-0

Examples

TODO

	
pyEQL.functions.entropy_mix(Solution1, Solution2)

	Return the ideal mixing entropy associated with mixing two solutions

	Parameters:	Solution1, Solution2 : Solution objects

The two solutions to be mixed.

	Returns:	float

The ideal mixing entropy associated with complete mixing of the
Solutions, in Joules.

Notes

The ideal entropy of mixing is calculated as follows:[2]

\[\Delta_{mix} S = \sum_i (n_c + n_d) R T \ln x_b - \sum_i n_c R T \ln x_c - \sum_i n_d R T \ln x_d\]

Where n is the number of moles of substance, T is the temperature in kelvin,
and subscripts b, c, and refer to the concentrated, dilute, and blended
Solutions, respectively.

Note that dissociated ions must be counted as separate components,
so a simple salt dissolved in water is a three component solution (cation,
anion, and water).

References

	[2]	Koga, Yoshikata, 2007. //Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.// Elsevier, 2007, pp. 23-37.

	
pyEQL.functions.gibbs_mix(Solution1, Solution2)

	Return the Gibbs energy change associated with mixing two solutions

	Parameters:	Solution1, Solution2 : Solution objects

The two solutions to be mixed.

	Returns:	float

The change in Gibbs eneryg associated with complete mixing of the
Solutions, in Joules.

Notes

The Gibbs energy of mixing is calculated as follows: [3]

\[\Delta_{mix} G = \sum_i (n_c + n_d) R T \ln a_b - \sum_i n_c R T \ln a_c - \sum_i n_d R T \ln a_d\]

Where n is the number of moles of substance, T is the temperature in kelvin,
and subscripts b, c, and refer to the concentrated, dilute, and blended
Solutions, respectively.

Note that dissociated ions must be counted as separate components,
so a simple salt dissolved in water is a three component solution (cation,
anion, and water).

References

	[3]	Koga, Yoshikata, 2007. //Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.// Elsevier, 2007, pp. 23-37.

	
pyEQL.functions.mix(Solution1, Solution2)

	Mix two solutions together

Returns a new Solution object that results from the mixing of Solution1
and Solution2

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	pyEQL 0.2.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyEQL	

 	
 	
 pyEQL.activity_correction	

 	
 	
 pyEQL.chemical_formula	

 	
 	
 pyEQL.database	

 	
 	
 pyEQL.functions	

 	
 	
 pyEQL.parameter	

 	
 	
 pyEQL.solute	

 	
 	
 pyEQL.solution	

 	
 	
 pyEQL.water_properties	

 Copyright 2014-2015, Ryan S. Kingsbury.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	
 modules |

 	pyEQL 0.2.1 documentation

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | P
 | S
 | W

_

 	

 	_debye_parameter_activity() (in module pyEQL.activity_correction)

 	_debye_parameter_B() (in module pyEQL.activity_correction)

 	_debye_parameter_osmotic() (in module pyEQL.activity_correction)

 	_debye_parameter_volume() (in module pyEQL.activity_correction)

 	_pitzer_B_MX() (in module pyEQL.activity_correction)

 	

 	_pitzer_B_phi() (in module pyEQL.activity_correction)

 	_pitzer_f1() (in module pyEQL.activity_correction)

 	_pitzer_f2() (in module pyEQL.activity_correction)

 	_pitzer_log_gamma() (in module pyEQL.activity_correction)

A

 	

 	add_amount() (pyEQL.solution.Solution method)

 	add_moles() (pyEQL.solute.Solute method)

 	add_parameter() (pyEQL.database.Paramsdb method)

 	

 	(pyEQL.solute.Solute method)

 	

 	add_path() (pyEQL.database.Paramsdb method)

 	add_solute() (pyEQL.solution.Solution method)

 	add_solvent() (pyEQL.solution.Solution method)

C

 	

 	copy() (pyEQL.solution.Solution method)

D

 	

 	donnan_eql() (in module pyEQL.functions)

E

 	

 	entropy_mix() (in module pyEQL.functions)

G

 	

 	get_activity() (pyEQL.solution.Solution method)

 	get_activity_coefficient() (pyEQL.solution.Solution method)

 	get_activity_coefficient_davies() (in module pyEQL.activity_correction)

 	get_activity_coefficient_debyehuckel() (in module pyEQL.activity_correction)

 	get_activity_coefficient_guntelberg() (in module pyEQL.activity_correction)

 	get_activity_coefficient_pitzer() (in module pyEQL.activity_correction)

 	get_amount() (pyEQL.solution.Solution method)

 	get_apparent_volume_pitzer() (in module pyEQL.activity_correction)

 	get_chemical_potential_energy() (pyEQL.solution.Solution method)

 	get_conductivity() (pyEQL.solution.Solution method)

 	get_debye_length() (pyEQL.solution.Solution method)

 	get_density() (pyEQL.solution.Solution method)

 	get_dimensions() (pyEQL.parameter.Parameter method)

 	get_element_names() (in module pyEQL.chemical_formula)

 	get_element_numbers() (in module pyEQL.chemical_formula)

 	get_elements() (in module pyEQL.chemical_formula)

 	get_formal_charge() (in module pyEQL.chemical_formula)

 	

 	(pyEQL.solute.Solute method)

 	get_ionic_strength() (pyEQL.solution.Solution method)

 	get_lattice_distance() (pyEQL.solution.Solution method)

 	get_magnitude() (pyEQL.parameter.Parameter method)

 	get_mass() (pyEQL.solution.Solution method)

 	get_mobility() (pyEQL.solute.Solute method)

 	get_molar_conductivity() (pyEQL.solute.Solute method)

 	get_mole_fraction() (pyEQL.solution.Solution method)

 	get_molecular_weight() (in module pyEQL.chemical_formula)

 	

 	(pyEQL.solute.Solute method)

 	

 	get_moles() (pyEQL.solute.Solute method)

 	get_moles_solvent() (pyEQL.solution.Solution method)

 	get_name() (pyEQL.parameter.Parameter method)

 	

 	(pyEQL.solute.Solute method)

 	get_osmotic_coefficient() (pyEQL.solution.Solution method)

 	get_osmotic_coefficient_pitzer() (in module pyEQL.activity_correction)

 	get_osmotic_pressure() (pyEQL.solution.Solution method)

 	get_parameter() (pyEQL.database.Paramsdb method)

 	

 	(pyEQL.solute.Solute method)

 	get_pressure() (pyEQL.solution.Solution method)

 	get_property() (pyEQL.solution.Solution method)

 	get_salt() (pyEQL.solution.Solution method)

 	get_solute() (pyEQL.solution.Solution method)

 	get_solvent() (pyEQL.solution.Solution method)

 	get_solvent_mass() (pyEQL.solution.Solution method)

 	get_temperature() (pyEQL.solution.Solution method)

 	get_total_moles_solute() (pyEQL.solution.Solution method)

 	get_transport_number() (pyEQL.solution.Solution method)

 	get_units() (pyEQL.parameter.Parameter method)

 	get_value() (pyEQL.parameter.Parameter method)

 	get_viscosity_dynamic() (pyEQL.solution.Solution method)

 	get_viscosity_kinematic() (pyEQL.solution.Solution method)

 	get_viscosity_relative() (pyEQL.solution.Solution method)

 	get_volume() (pyEQL.solution.Solution method)

 	get_water_activity() (pyEQL.solution.Solution method)

 	gibbs_mix() (in module pyEQL.functions)

H

 	

 	has_parameter() (pyEQL.database.Paramsdb method)

 	has_species() (pyEQL.database.Paramsdb method)

 	

 	hill_order() (in module pyEQL.chemical_formula)

I

 	

 	is_valid_element() (in module pyEQL.chemical_formula)

 	

 	is_valid_formula() (in module pyEQL.chemical_formula)

L

 	

 	list_activities() (pyEQL.solution.Solution method)

 	list_concentrations() (pyEQL.solution.Solution method)

 	

 	list_path() (pyEQL.database.Paramsdb method)

 	list_solutes() (pyEQL.solution.Solution method)

M

 	

 	mix() (in module pyEQL.functions)

P

 	

 	p() (pyEQL.solution.Solution method)

 	Parameter (class in pyEQL.parameter)

 	Paramsdb (class in pyEQL.database)

 	print_database() (pyEQL.database.Paramsdb method)

 	print_latex() (in module pyEQL.chemical_formula)

 	pyEQL.activity_correction (module)

 	pyEQL.chemical_formula (module)

 	

 	pyEQL.database (module)

 	pyEQL.functions (module)

 	pyEQL.parameter (module)

 	pyEQL.solute (module)

 	pyEQL.solution (module)

 	pyEQL.water_properties (module)

S

 	

 	search_parameters() (pyEQL.database.Paramsdb method)

 	set_amount() (pyEQL.solution.Solution method)

 	set_moles() (pyEQL.solute.Solute method)

 	set_pressure() (pyEQL.solution.Solution method)

 	

 	set_temperature() (pyEQL.solution.Solution method)

 	set_volume() (pyEQL.solution.Solution method)

 	Solute (class in pyEQL.solut