
pyEQL Documentation
Release v0.15.1

Ryan Kingsbury

Mar 14, 2024

CONTENTS

1 Description 3

2 1-minute Tutorial 5
2.1 Install . 5
2.2 Create a Solution . 5
2.3 Get properties . 5

3 Key Features 7

4 Contents: 9
4.1 Quickstart . 9
4.2 pyEQL Overview . 10
4.3 Tutorials . 14
4.4 Installing . 36
4.5 Creating a Solution . 38
4.6 Writing Formulas . 39
4.7 Converting Units . 40
4.8 Getting Concentrations . 42
4.9 Arithmetic Operations . 45
4.10 Saving and Loading from Files . 46
4.11 Electrolyte Modeling Engines . 47
4.12 Property Database . 49
4.13 Mixing Functions . 59
4.14 Solution Class Reference . 61
4.15 Module reference . 78
4.16 Contributing to pyEQL . 100
4.17 Contributors . 102
4.18 License . 103

Bibliography 105

Index 107

i

ii

pyEQL Documentation, Release v0.15.1

CONTENTS 1

pyEQL Documentation, Release v0.15.1

2 CONTENTS

CHAPTER

ONE

DESCRIPTION

The goal of pyEQL is to provide a stable, intuitive, easy to learn python interface for water chemistry that can be
connected to a variety of different modeling engines
Specifically, pyEQL defines a Solution class to represent an aqueous electrolyte solution. Virtually all of the user-
facing functions in pyEQL are accessed through the Solution class. It also includes a number of other utilities to
support water chemistry analysis including a database of diffusion coefficients, activity correction parameters, and
other data on a variety of common electrolytes.

3

pyEQL Documentation, Release v0.15.1

4 Chapter 1. Description

CHAPTER

TWO

1-MINUTE TUTORIAL

2.1 Install

pip install pyEQL

2.2 Create a Solution

>>> from pyEQL import Solution
>>> s1 = Solution({'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'},

pH=8,
temperature = '20 degC',
volume='8 L')

2.3 Get properties

>>> s1.density
<Quantity(1.03710384, 'kilogram / liter')>
>>> s1.conductivity
<Quantity(8.09523295, 'siemens / meter')>
>>> s1.osmotic_pressure.to('atm')
<Quantity(46.7798197, 'standard_atmosphere')>
>>> s1.get_amount('Na+', 'ug/L')
<Quantity(22989769.3, 'microgram / liter')>

5

pyEQL Documentation, Release v0.15.1

6 Chapter 2. 1-minute Tutorial

CHAPTER

THREE

KEY FEATURES

pyEQL is designed to be customizable and easy to integrate into projects that require modeling of chemical thermodyan-
mics of aqueous solutions. It aspires to provide a flexible, extensible framework for the user, with a high level of
transparency about data sources and calculation methods.

• Build accurate solution properties using a minimum of inputs. Just specify the identity and quantity of a solute
and pyEQL will do the rest.

• “Graceful Decay” from more sophisticated, data-intensive modeling approaches to simpler, less accurate ones
depending on the amount of data supplied.

• Not limited to dilute solutions. pyEQL contains out of the box support for the Pitzer Model and other methods
for modeling concentrated solutions.

• Built in database containing hundreds of model parameters and physicochemical properties for different ions.

• Customizable modeling engine system that allows the Solution API to work with multiple electrolyte models.

• Units-aware calculations (by means of the pint library)

7

https://pyeql.readthedocs.io/en/latest/database.html
https://github.com/hgrecco/pint

pyEQL Documentation, Release v0.15.1

8 Chapter 3. Key Features

CHAPTER

FOUR

CONTENTS:

4.1 Quickstart

pyEQL creates a new type (Solution class) to represent a chemical solution. It also comes pre-loaded with a database
of diffusion coefficients, activity correction parameters, and other data on a variety of common electrolytes. Virtually
all of the user-facing functions in pyEQL are accessed through the Solution class.

4.1.1 Creating a Solution Object

Create a Solution object by invoking the Solution class:

>>> from pyEQL import Solution
>>> s1 = Solution()
>>> s1
<pyEQL.Solution at 0x7f9d188309b0>

If no arguments are specified, pyEQL creates a 1-L solution of water at pH 7 and 25 degC.

More usefully, you can specify solutes and bulk properties:

>>> s2 = Solution({'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'}, pH=8, temperature = '20 degC
→˓', volume='8 L')

See Creating a Solution for more details.

4.1.2 Retrieving Solution Properties

Bulk Solution Properties

pyEQL provides a variety of methods to calculate or look up bulk properties like temperature, ionic strength, conduc-
tivity, and density.

>>> s2.volume
8.071524653929277 liter
>>> s2.density
1.0182802742389558 kilogram/liter
>>> s2.conductivity
4.083570230022633 siemens/meter
>>> s2.ionic_strength
0.500000505903012 mole/kilogram

9

pyEQL Documentation, Release v0.15.1

Individual Solute Properties

You can also retrieve properties for individual solutes (or the solvent, water)

>>> s2.get_amount('Na+','mol/L')
0.4946847550064916 mole/liter
>>> s2.get_activity_coefficient('Na+)
0.6838526233869155
>>> s2.get_activity('Na+')
0.3419263116934578
>>> s2.get_property('Na+','transport.diffusion_coefficient')
1.1206048116287536e-05 centimeter2/second

See Getting Concentrations for more details.

4.1.3 Units-Aware Calculations using pint

pyEQL uses pint to perform units-aware calculations. The pint library creates Quantity objects that contain both a
magnitude and a unit.

>>> from pyEQL import ureg
>>> test_qty = pyEQL.ureg('1 kg/m**3')
1.0 kilogram/meter3
>>> test_qty.magnitude
1.0

Many pyEQL methods require physical quantities to be input as strings, then these methods return pint Quantity
objects. A string quantity must contain both a magnitude and a unit (e.g. ‘0.5 mol/L’). In general, pint recognizes
common abbreviations and SI prefixes. Compound units must follow Python math syntax (e.g. cm**2 not cm2).

See the Converting Units for more details.

4.2 pyEQL Overview

pyEQL is an open-source python library for solution chemistry calculations and ion properties developed by the Kings-
bury Lab at Princeton University.

Documentation | How to Install | GitHub

10 Chapter 4. Contents:

https://github.com/hgrecco/pint
https://www.kingsburylab.org/
https://www.kingsburylab.org/
https://pyeql.readthedocs.io/en/latest/
https://pyeql.readthedocs.io/en/latest/installation.html
https://github.com/rkingsbury/pyEQL

pyEQL Documentation, Release v0.15.1

4.2.1 Installation

Uncomment and run the code cell below, if you do not already have pyEQL

[2]: # pip install pyEQL

4.2.2 Main feature: The Solution class

[1]: from pyEQL import Solution

[2]: s1 = Solution({"Mg+2": "0.2 mol/L", "Cl-1": "0.4 mol/L"}, temperature='20 degC')

WARNING 2023-11-07 11:18:03,638 solution.py _get_property 2084 Partial molar volume for␣
→˓species H[+1] not corrected for temperature
WARNING 2023-11-07 11:18:03,648 solution.py _get_property 2084 Partial molar volume for␣
→˓species OH[-1] not corrected for temperature
WARNING 2023-11-07 11:18:03,922 solution.py _get_property 2084 Partial molar volume for␣
→˓species Mg[+2] not corrected for temperature
WARNING 2023-11-07 11:18:03,951 activity_correction.py _debye_parameter_volume 231 Debye-
→˓Huckel limiting slope for volume is approximate when T is not equal to 25 degC

Bulk Properties

[3]: s1.density

[3]: 1.0138757383570756 kg
l

[4]: s1.conductivity

WARNING 2023-11-07 11:18:04,061 engines.py get_activity_coefficient 314 Ionic strength␣
→˓too high to estimate activity for species H[+1]. Specify parameters for Pitzer model.␣
→˓Returning unit activity coefficient
WARNING 2023-11-07 11:18:04,079 engines.py get_activity_coefficient 314 Ionic strength␣
→˓too high to estimate activity for species OH[-1]. Specify parameters for Pitzer model.␣
→˓Returning unit activity coefficient

[4]: 3.299995263108893 S
m

[5]: s1.volume

[5]: 1 l

[6]: s1.pressure

[6]: 1 atm

[7]: s1.temperature

[7]: 293.15 K

[8]: s1.osmotic_pressure

[8]: 1286752.4185332006 Pa

4.2. pyEQL Overview 11

pyEQL Documentation, Release v0.15.1

Composition

[9]: s1.components

[9]: {'H2O(aq)': 55.221652761186476, 'Cl[-1]': 0.4, 'Mg[+2]': 0.2, 'H[+1]': 1e-07, 'OH[-1]':␣
→˓1e-07}

[10]: s1.solvent

[10]: 'H2O(aq)'

[11]: s1.cations

[11]: {'Mg[+2]': 0.2, 'H[+1]': 1e-07}

[12]: s1.anions

[12]: {'Cl[-1]': 0.4, 'OH[-1]': 1e-07}

[13]: s1.neutrals

[13]: {'H2O(aq)': 55.221652761186476}

Species Concentrations

[14]: s1.get_amount('Mg+2', 'M')

[14]: 0.20000000000000007 M

[15]: s1.get_amount('Cl-', '%')

[15]: 1.3987118404647676$

[16]: s1.get_amount('Mg+2', 'eq/L')

[16]: 0.4 mol
l

[17]: s1.get_amount('Mg+2', 'ug/kg')

[17]: 4886244.60412788 g
kg

Transport

[18]: s1.get_transport_number('Na+')

[18]: 0.0$

[19]: s1.get_transport_number('Mg+2')

[19]: 0.40998795156327783$

[20]: s1.get_transport_number('Cl-')

[20]: 0.5900109897851136$

12 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

Speciation

[21]: s1.equilibrate()

[22]: s1.components

[22]: {'H2O(aq)': 55.238455538403954, 'Cl[-1]': 0.38323989957700755, 'Mg[+2]': 0.
→˓18323990520853942, 'MgCl[+1]': 0.016760093825573405, 'H[+1]': 1.2403230417432767e-07,
→˓'OH[-1]': 9.844314720800745e-08, 'HCl(aq)': 5.431780489909693e-09, 'MgOH[+1]': 7.
→˓932661202804441e-15, 'O2(aq)': 3.1477649388058775e-26, 'HClO(aq)': 8.450946375546259e-
→˓29, 'ClO[-1]': 3.367672345557701e-29, 'H2(aq)': 5.442728186726209e-35, 'ClO2[-1]': 0.0,
→˓ 'ClO3[-1]': 0.0, 'ClO4[-1]': 0.0, 'HClO2(aq)': 0.0}

Saving Solution to a file

[23]: from monty.serialization import dumpfn
dumpfn(s1, 'test_solution.json')

[24]: s1.as_dict()

[24]: {'@module': 'pyEQL.solution',
'@class': 'Solution',
'@version': '0.9.0.post1.dev3+g22e5c4a',
'solutes': {'H2O(aq)': '55.238455538403954 mol',
'Cl[-1]': '0.38323989957700755 mol',
'Mg[+2]': '0.18323990520853942 mol',
'MgCl[+1]': '0.016760093825573405 mol',
'H[+1]': '1.2403230417432767e-07 mol',
'OH[-1]': '9.844314720800745e-08 mol',
'HCl(aq)': '5.431780489909693e-09 mol',
'MgOH[+1]': '7.932661202804441e-15 mol',
'O2(aq)': '3.1477649388058775e-26 mol',
'HClO(aq)': '8.450946375546259e-29 mol',
'ClO[-1]': '3.367672345557701e-29 mol',
'H2(aq)': '5.442728186726209e-35 mol',
'ClO2[-1]': '0.0 mol',
'ClO3[-1]': '0.0 mol',
'ClO4[-1]': '0.0 mol',
'HClO2(aq)': '0.0 mol'},
'volume': '1 l',
'temperature': '293.15 K',
'pressure': '1 atm',
'pH': 6.90646518824501,
'pE': 8.5,
'balance_charge': None,
'solvent': 'H2O(aq)',
'engine': 'native',
'database': {'@module': 'maggma.stores.mongolike',
'@class': 'JSONStore',
'@version': '0.57.4',
'paths': ['/home/ryan/mambaforge/envs/pbx/code/pyEQL/src/pyEQL/database/pyeql_db.json

→˓'],
(continues on next page)

4.2. pyEQL Overview 13

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'read_only': True,
'serialization_option': None,
'serialization_default': None,
'key': 'formula'}}

4.2.3 Units-Aware Calculations

[25]: s1.volume.to('mL')

[25]: 1000.0000000000001 ml

[26]: s1.volume.to('gal')

[26]: 0.26417205235814856 gal

[27]: s1.osmotic_pressure.to('bar').magnitude

WARNING 2023-11-07 11:18:04,616 engines.py get_osmotic_coefficient 462 Cannot calculate␣
→˓osmotic coefficient because Pitzer parameters for salt HClO3 are not specified.␣
→˓Returning unit osmotic coefficient
WARNING 2023-11-07 11:18:04,621 engines.py get_osmotic_coefficient 462 Cannot calculate␣
→˓osmotic coefficient because Pitzer parameters for salt HClO2 are not specified.␣
→˓Returning unit osmotic coefficient

[27]: 12.630074635540739

4.2.4 Contribution Opportunities

Benchmarking - Compiling additional validation data for activity, conductivity, etc. - Quantifying error associated
with different models - Refactoring unit tests suite to separate benchmarking

Documentation - Writing tutorials - Writing expanded docs - Cleaning up / updating docstrings

New Features - Better viscosity model - Expanded unit testing (increase test coverage to 90%) - Additional properties
- Additional mixing rules / models for mixed electrolytes

Database - Expand database doverage to include additional species - More viscosity coefficients - Add ‘sho’ parameter
- More diffusion coefficients

Software Engineering - Additional refactoring (e.g., mypy linting for robustness) - Bugfixes

4.3 Tutorials

Each tutorial below is presented in a Jupyter notebook. You can view the executed notebooks here in the documentation,
view the raw notebooks on GitHub, or interactively run them in your web browser using Binder by clicking the respective
links below.

14 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

4.3.1 Functionality Overview

View Notebook on GitHub | Try Interactive Notebook on Binder

4.3.2 Calculating Osmotic Pressure

View Notebook on GitHub | Try Interactive Notebook on Binder

pyEQL Tutorial: Calculating Osmotic Pressure

pyEQL is an open-source python library for solution chemistry calculations and ion properties developed by the Kings-
bury Lab at Princeton University.

Documentation | How to Install | GitHub

Installation

Uncomment and run the code cell below, if you do not already have pyEQL

[1]: # pip install pyEQL

First, create a Solution

pyEQL’s built-in property database contains Pitzer model parameters for many simple (binary) electrolytes. If such
parameters are available, pyEQL will use them by default.

[2]: from pyEQL import Solution
2 mol/L NaCl
s1 = Solution({"Na+": "2 mol/L", "Cl-": "2 mol/L"})

Get the osmotic pressure

Note that the osmotic pressure (and most Solution properties) are returned as pint Quantity objects (see Converting
Units).

[3]: s1.osmotic_pressure

[3]: 10224795.514383134 Pa

If you want the osmotic pressure in different units, or you only want the magnitude, use to() and magnitude, respec-
tively

4.3. Tutorials 15

https://github.com/KingsburyLab/pyEQL/tree/main/docs/examples/pyeql_demo.ipynb
https://mybinder.org/v2/gh/KingsburyLab/pyEQL/main?labpath=docs%2Fexamples%2Fpyeql_demo.ipynb
https://github.com/KingsburyLab/pyEQL/tree/main/docs/examples/pyeql_tutorial_osmotic_pressure.ipynb
https://mybinder.org/v2/gh/KingsburyLab/pyEQL/main?labpath=docs%2Fexamples%2Fpyeql_tutorial_osmotic_pressure.ipynb
https://www.kingsburylab.org/
https://www.kingsburylab.org/
https://pyeql.readthedocs.io/en/latest/
https://pyeql.readthedocs.io/en/latest/installation.html
https://github.com/rkingsbury/pyEQL
https://pyeql.readthedocs.io/en/latest/units.html
https://pyeql.readthedocs.io/en/latest/units.html

pyEQL Documentation, Release v0.15.1

[4]: s1.osmotic_pressure.to('bar')

[4]: 102.24795514383135 bar

[5]: s1.osmotic_pressure.to('bar').magnitude

[5]: 102.24795514383135

Use a for loop for multiple calculations

You can rapidly get estimates for multiple concentrations (or temperatures, or solutes) by using a for loop. Notice how
in the example below, we use f-strings to insert the desired concentration (from the for loop) into the argument passed
to Solution and to print the results.

[6]: for conc in [0.1, 0.5, 1, 2, 4]:
s1 = Solution({"Na+": f"{conc} mol/L", "Cl-": f"{conc} mol/L"})
print(f"At C={conc:.1f} M, the osmotic pressure is {s1.osmotic_pressure.to('bar'):.

→˓2f}.")

At C=0.1 M, the osmotic pressure is 4.63 bar.
At C=0.5 M, the osmotic pressure is 23.07 bar.
At C=1.0 M, the osmotic pressure is 47.40 bar.
At C=2.0 M, the osmotic pressure is 102.25 bar.
At C=4.0 M, the osmotic pressure is 246.95 bar.

Compare different modeling engines

pyEQL contains several different modeling engines that can calculate activity coefficients or osmotic pressures. At
present, there are three options:

1. The native or built-in engine, which includes an implementation of the Piter model (Default).

2. the phreeqc engine, which utilizes the USGS PHREEQC model with the phreeqc.dat database.

3. An ideal solution model (ideal) which does not account for solution non-ideality.

You select a modeling engine using the engine keyword argument when you create a Solution. Let’s compare the
preditions from the three models.

[7]: s_ideal = Solution({"Na+": "2 mol/L", "Cl-": "2 mol/L"}, engine='ideal')
s_phreeqc = Solution({"Na+": "2 mol/L", "Cl-": "2 mol/L"}, engine='phreeqc')
s_native = Solution({"Na+": "2 mol/L", "Cl-": "2 mol/L"}, engine='native')

[8]: s_ideal.osmotic_pressure.to('bar')

WARNING 2023-11-10 11:48:57,162 solution.py get_water_activity 1934 Pitzer parameters␣
→˓not found. Water activity set equal to mole fraction

[8]: 95.73878424096024 bar

[9]: s_phreeqc.osmotic_pressure.to('bar')

[9]: 95.73878424096024 bar

[10]: s_native.osmotic_pressure.to('bar')

16 Chapter 4. Contents:

https://realpython.com/python-f-strings/
https://pyeql.readthedocs.io/en/latest/engines.html

pyEQL Documentation, Release v0.15.1

[10]: 102.24795514383135 bar

Plot the comparison vs. experiment

We can make a plot showing how the 3 models compare by combining the two previous steps (using a for loop plus
changing the engine keyword argument. Note that this example makes use of matplotlib for plotting.

[11]: # create empty lists to hold the results
pi_ideal = []
pi_phreeqc = []
pi_native = []

concentrations = [0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.4, 2, 2.5, 3, 3.5, 4]

for conc in concentrations:
s_ideal = Solution({"Na+": f"{conc} mol/kg", "Cl-": f"{conc} mol/kg"}, engine='ideal

→˓')
s_phreeqc = Solution({"Na+": f"{conc} mol/kg", "Cl-": f"{conc} mol/kg"}, engine=

→˓'phreeqc')
s_native = Solution({"Na+": f"{conc} mol/kg", "Cl-": f"{conc} mol/kg"}, engine=

→˓'native')

store the osmotic pressures in the respective lists
note that we have to just store the .magnitude because matplotlib can't plot␣

→˓Quantity
pi_ideal.append(s_ideal.osmotic_pressure.to('bar').magnitude)
pi_phreeqc.append(s_phreeqc.osmotic_pressure.to('bar').magnitude)
pi_native.append(s_native.osmotic_pressure.to('bar').magnitude)

We will include experimental data from the IDST as a benchmark. The IDST gives us water activity, which we convert
into osmotic pressure according to

Π = −𝑅𝑇

𝑉𝑤
ln 𝑎𝑤

Where Π is the osmotic pressure, 𝑉𝑤 is the partial molar volume of water (18.2 cm**3/mol), and 𝑎𝑤 is the water
activity.

[12]: import math
water activity at [0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] mol/kg
water_activity_idst = [0.99664, 0.993353, 0.99008, 0.986804, 0.98352, 0.966828, 0.953166,
→˓ 0.93191, 0.913072, 0.89347, 0.872859, 0.85133]

calculate osmotic pressure as -RT/Vw ln(a_w). Factor 10 converts to bar.
pi_idst = [-8.314*298.15/18.2 * math.log(a) * 10 for a in water_activity_idst]

[13]: # plot the results!
from matplotlib import pyplot as plt

fig, ax = plt.subplots()
ax.plot(concentrations, pi_ideal, label="engine='ideal'", ls='--', color='gray')
ax.plot(concentrations, pi_phreeqc, label="engine='phreeqc'", ls=':', color='green')

(continues on next page)

4.3. Tutorials 17

https://idst.inl.gov/

pyEQL Documentation, Release v0.15.1

(continued from previous page)

ax.plot(concentrations, pi_native, label="engine='native'", ls='-', color='navy')
ax.plot(concentrations, pi_idst, label="experiment", ls='', color='red', marker="x")
ax.legend()
ax.set_xlabel('Solute Concentration (M)')
ax.set_ylabel('Osmotic Pressure (bar)')
fig.suptitle('pyEQL prediction of NaCl osmotic pressure')

[13]: Text(0.5, 0.98, 'pyEQL prediction of NaCl osmotic pressure')

[]:

18 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

4.3.3 Accessing the Property Database

View Notebook on GitHub | Try Interactive Notebook on Binder

pyEQL Tutorial: Searching the Property Database

pyEQL is an open-source python library for solution chemistry calculations and ion properties developed by the Kings-
bury Lab at Princeton University.

Documentation | How to Install | GitHub

Installation

Uncomment and run the code cell below, if you do not already have pyEQL

[1]: # pip install pyEQL

First, import the property database

pyEQL’s built-in property database contains physichochemical, transport, and model parameters for hundreds of solutes.
This information is used behind the scenes when you interact with a Solution object, but it can also be accessed
directly.

[2]: from pyEQL import IonDB

How to Search the Database

Query an example document

You can think of the database like list of dict that contain structure data. More specifically, the database is a list of
`Solute objects <https://pyeql.readthedocs.io/en/latest/database.html#the-solute-class>`__ that have been serialized
to dictionaries. We refer to each of these dict as “documents” (consistent with MongoDB terminology) or “records”

To see what one document looks like, use query_one(), which retrieves a single record from the database. The record
is a dict.

[3]: IonDB.query_one()

[3]: {'_id': ObjectId('654e5f131ed012c187817e6a'),
'formula': 'Ac[+3]',
'charge': 3,
'molecular_weight': '227.0 g/mol',
'elements': ['Ac'],

(continues on next page)

4.3. Tutorials 19

https://github.com/KingsburyLab/pyEQL/tree/main/docs/examples/pyeql_tutorial_database.ipynb
https://mybinder.org/v2/gh/KingsburyLab/pyEQL/main?labpath=docs%2Fexamples%2Fpyeql_tutorial_osmotic_pressure.ipynb
https://www.kingsburylab.org/
https://www.kingsburylab.org/
https://pyeql.readthedocs.io/en/latest/
https://pyeql.readthedocs.io/en/latest/installation.html
https://github.com/rkingsbury/pyEQL
https://pyeql.readthedocs.io/en/latest/database.html#the-solute-class

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'chemsys': 'Ac',
'pmg_ion': {'Ac': 1,
'charge': 3,
'@module': 'pymatgen.core.ion',
'@class': 'Ion',
'@version': None},
'formula_html': 'Ac⁺³',
'formula_latex': 'Ac$^{+3}$',
'formula_hill': 'Ac',
'formula_pretty': 'Ac^+3',
'oxi_state_guesses': {'Ac': 3},
'n_atoms': 1,
'n_elements': 1,
'size': {'radius_ionic': {'value': '1.26 Å',
'reference': 'pymatgen',
'data_type': 'experimental'},
'radius_hydrated': None,
'radius_vdw': {'value': '2.47 ',
'reference': 'pymatgen',
'data_type': 'experimental'},
'molar_volume': None,
'radius_ionic_marcus': {'value': '1.18 ± 0.02 ',
'reference': 'Marcus2015',
'data_type': 'experimental'}},

'thermo': {'G_hydration': {'value': '-3086.0 ± 10 kJ/mol',
'reference': '10.1021/acs.jpca.9b05140',
'data_type': 'experimental'},
'G_formation': None},
'transport': {'diffusion_coefficient': None},
'model_parameters': {'activity_pitzer': {'Beta0': None,
'Beta1': None,
'Beta2': None,
'Cphi': None,
'Max_C': None},
'molar_volume_pitzer': {'Beta0': None,
'Beta1': None,
'Beta2': None,
'Cphi': None,
'V_o': None,
'Max_C': None},
'viscosity_jones_dole': {'B': None}}}

20 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

Query a specific document

The IonDB is a `maggma.Store <https://materialsproject.github.io/maggma/getting_started/stores/>`__ that can be
queried using a MongoDB-like syntax. The basic syntax is

IonDB.query_one({field: value})

where field is a top-level key in the Solute dict, such as formula, charge, or elements. See this page and the
maggma documentation (link WIP) for more detailed examples.

[4]: # a document with the formula "Na[+1]"
IonDB.query_one({"formula":'Na[+1]'})

[4]: {'_id': ObjectId('654e5f131ed012c187817f46'),
'formula': 'Na[+1]',
'charge': 1,
'molecular_weight': '22.98976928 g/mol',
'elements': ['Na'],
'chemsys': 'Na',
'pmg_ion': {'Na': 1,
'charge': 1,
'@module': 'pymatgen.core.ion',
'@class': 'Ion',
'@version': None},
'formula_html': 'Na⁺¹',
'formula_latex': 'Na$^{+1}$',
'formula_hill': 'Na',
'formula_pretty': 'Na^+1',
'oxi_state_guesses': {'Na': 1},
'n_atoms': 1,
'n_elements': 1,
'size': {'radius_ionic': {'value': '1.16 Å',
'reference': 'pymatgen',
'data_type': 'experimental'},
'radius_hydrated': {'value': '3.58 ',
'reference': 'Nightingale1959',
'data_type': 'experimental'},
'radius_vdw': {'value': '2.27 ',
'reference': 'pymatgen',
'data_type': 'experimental'},
'molar_volume': {'value': '-5.0 cm**3/mol',
'reference': 'Calculation of the Partial Molal Volume of Organic Compounds and␣

→˓Polymers. Progress in Colloid & Polymer Science (94), 20-39.',
'data_type': 'experimental'},
'radius_ionic_marcus': {'value': '1.02 ± 0.02 ',
'reference': 'Marcus2015',
'data_type': 'experimental'}},

'thermo': {'G_hydration': {'value': '-427.0 ± 6 kJ/mol',
'reference': 'Marcus2015',
'data_type': 'experimental'},
'G_formation': None},
'transport': {'diffusion_coefficient': {'value': '1.334e-05 cm**2/s',
'reference': 'CRC',
'data_type': 'experimental'}},

(continues on next page)

4.3. Tutorials 21

https://materialsproject.github.io/maggma/getting_started/stores/
https://riptutorial.com/mongodb/example/26813/pymongo-queries

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'model_parameters': {'activity_pitzer': {'Beta0': None,
'Beta1': None,
'Beta2': None,
'Cphi': None,
'Max_C': None},
'molar_volume_pitzer': {'Beta0': None,
'Beta1': None,
'Beta2': None,
'Cphi': None,
'V_o': None,
'Max_C': None},
'viscosity_jones_dole': {'B': {'value': '0.085 dm**3/mol',
'reference': 'https://doi.org/10.1021/cr00040a004',
'data_type': 'fitted'}},

'dielectric_zuber': {'value': '3.62 dimensionless',
'reference': 'https://doi.org/10.1016/j.fluid.2014.05.037',
'data_type': 'fitted'}}}

Only return a subset of the document

If you don’t need to see the entire document, you can restrict the data returned by the query (in MongoDB, this is
called “projection”). To use this feature, pass a second argument that is a list containing only the fields that you want
returned. Note that there is a unique identified (field name _id) that is always returned.

[5]: # a document with the formula "Na[+1]", where we only want the formula, charge, and␣
→˓molecular_weight
IonDB.query_one({"formula":'Na[+1]'}, ["formula","charge","molecular_weight"])

[5]: {'formula': 'Na[+1]',
'charge': 1,
'molecular_weight': '22.98976928 g/mol',
'_id': ObjectId('654e5f131ed012c187817f46')}

[6]: # a document with the charge -1, where we only want the formula, charge, and molecular_
→˓weight
IonDB.query_one({"charge":-1}, ["formula","charge","molecular_weight"])

[6]: {'formula': 'Ag(CN)2[-1]',
'charge': -1,
'molecular_weight': '159.903 g/mol',
'_id': ObjectId('654e5f131ed012c187817e6b')}

NOTE: Be mindful of data types when querying. charge is an int. If we tried to query charge as if it were a str,
we would get no results:

[7]: # a document with the charge -1, where we only want the formula, charge, and molecular_
→˓weight
IonDB.query_one({"charge":"-1"}, ["formula","charge","molecular_weight"])

22 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

Query nested fields

If you want to query a field that is not a top-level key (such as transport / diffusion_coefficient), you can place a .
between the field names at each level, e.g.

[8]: IonDB.query_one({"size.radius_vdw.value": "2.27 "}, ["formula", "size.radius_vdw.value"])

[8]: {'formula': 'Na2CO3(aq)',
'size': {'radius_vdw': {'value': '2.27 '}},
'_id': ObjectId('654e5f131ed012c187817f31')}

Note that in the Solute documents, most quantitative data are stored as ``str`` so that there is no ambiguity about
their units. In the example above, the value of the van der Waals radius is "2.27 " (a str, including a unit), NOT
2.27 (a float).

You can easily extract the value by turning the str into a Quantity (see Converting Units), or by using python string
operations to split the value and the units, e.g.

[9]: # string operations
print(float("2.27 ".split(" ")[0]))

2.27

[10]: # pint Quantity
from pyEQL import ureg
print(ureg.Quantity("2.27 ").magnitude)

2.27

Query multiple documents

query_one only returns a single document (a single dict). You can instead use query with exactly the same syntax
to return a generator of all documents that match your query.

[11]: # all documents with a charge of +2, returning only the formulas
IonDB.query({"charge":2}, ["formula","molecular_weight"])

[11]: <generator object MongoStore.query at 0x7f0e84427ed0>

A generator is not very useful unless we turn it into a list. You can do this with list() or with a list comprehension

[12]: # using list()
list(IonDB.query({"charge":2}, ["formula","molecular_weight"]))

[12]: [{'formula': 'Ag[+2]',
'molecular_weight': '107.8682 g/mol',
'_id': ObjectId('654e5f131ed012c187817e6e')},

{'formula': 'Au[+2]',
'molecular_weight': '196.966569 g/mol',
'_id': ObjectId('654e5f131ed012c187817e76')},

{'formula': 'Ba[+2]',
'molecular_weight': '137.327 g/mol',
'_id': ObjectId('654e5f131ed012c187817e83')},

{'formula': 'Be[+2]',
'molecular_weight': '9.012182 g/mol',

(continues on next page)

4.3. Tutorials 23

https://pyeql.readthedocs.io/en/latest/units.html
https://realpython.com/introduction-to-python-generators/
https://www.w3schools.com/python/python_lists_comprehension.asp

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'_id': ObjectId('654e5f131ed012c187817e85')},
{'formula': 'Ca[+2]',
'molecular_weight': '40.078 g/mol',
'_id': ObjectId('654e5f131ed012c187817e96')},

{'formula': 'Cd[+2]',
'molecular_weight': '112.411 g/mol',
'_id': ObjectId('654e5f131ed012c187817e9b')},

{'formula': 'Co[+2]',
'molecular_weight': '58.933195 g/mol',
'_id': ObjectId('654e5f131ed012c187817ea9')},

{'formula': 'Cr[+2]',
'molecular_weight': '51.9961 g/mol',
'_id': ObjectId('654e5f131ed012c187817eae')},

{'formula': 'Cu[+2]',
'molecular_weight': '63.546 g/mol',
'_id': ObjectId('654e5f131ed012c187817ebe')},

{'formula': 'Dy[+2]',
'molecular_weight': '162.5 g/mol',
'_id': ObjectId('654e5f131ed012c187817ec0')},

{'formula': 'Eu[+2]',
'molecular_weight': '151.964 g/mol',
'_id': ObjectId('654e5f131ed012c187817ec5')},

{'formula': 'Fe[+2]',
'molecular_weight': '55.845 g/mol',
'_id': ObjectId('654e5f131ed012c187817ecc')},

{'formula': 'Ge[+2]',
'molecular_weight': '72.64 g/mol',
'_id': ObjectId('654e5f131ed012c187817ed1')},

{'formula': 'Hg[+2]',
'molecular_weight': '200.59 g/mol',
'_id': ObjectId('654e5f131ed012c187817ef1')},

{'formula': 'In[+2]',
'molecular_weight': '114.818 g/mol',
'_id': ObjectId('654e5f131ed012c187817ef7')},

{'formula': 'Mg[+2]',
'molecular_weight': '24.305 g/mol',
'_id': ObjectId('654e5f131ed012c187817f26')},

{'formula': 'Mn[+2]',
'molecular_weight': '54.938045 g/mol',
'_id': ObjectId('654e5f131ed012c187817f2a')},

{'formula': 'Nd[+2]',
'molecular_weight': '144.242 g/mol',
'_id': ObjectId('654e5f131ed012c187817f4a')},

{'formula': 'Ni[+2]',
'molecular_weight': '58.6934 g/mol',
'_id': ObjectId('654e5f141ed012c187817f4f')},

{'formula': 'Pb[+2]',
'molecular_weight': '207.2 g/mol',
'_id': ObjectId('654e5f141ed012c187817f62')},

{'formula': 'Pd[+2]',
'molecular_weight': '106.42 g/mol',
'_id': ObjectId('654e5f141ed012c187817f63')},

(continues on next page)

24 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

{'formula': 'Po[+2]',
'molecular_weight': '210.0 g/mol',
'_id': ObjectId('654e5f141ed012c187817f65')},

{'formula': 'Pr[+2]',
'molecular_weight': '140.90765 g/mol',
'_id': ObjectId('654e5f141ed012c187817f67')},

{'formula': 'Pt[+2]',
'molecular_weight': '195.084 g/mol',
'_id': ObjectId('654e5f141ed012c187817f69')},

{'formula': 'Ra[+2]',
'molecular_weight': '226.0 g/mol',
'_id': ObjectId('654e5f141ed012c187817f6b')},

{'formula': 'Ru[+2]',
'molecular_weight': '101.07 g/mol',
'_id': ObjectId('654e5f141ed012c187817f7b')},

{'formula': 'Sc[+2]',
'molecular_weight': '44.955912 g/mol',
'_id': ObjectId('654e5f141ed012c187817f87')},

{'formula': 'Sm[+2]',
'molecular_weight': '150.36 g/mol',
'_id': ObjectId('654e5f141ed012c187817f8e')},

{'formula': 'Sn[+2]',
'molecular_weight': '118.71 g/mol',
'_id': ObjectId('654e5f141ed012c187817f90')},

{'formula': 'Sr[+2]',
'molecular_weight': '87.62 g/mol',
'_id': ObjectId('654e5f141ed012c187817f97')},

{'formula': 'Tc[+2]',
'molecular_weight': '98.0 g/mol',
'_id': ObjectId('654e5f141ed012c187817f9b')},

{'formula': 'Ti[+2]',
'molecular_weight': '47.867 g/mol',
'_id': ObjectId('654e5f141ed012c187817f9f')},

{'formula': 'Tm[+2]',
'molecular_weight': '168.93421 g/mol',
'_id': ObjectId('654e5f141ed012c187817fa7')},

{'formula': 'UO2[+2]',
'molecular_weight': '270.02771 g/mol',
'_id': ObjectId('654e5f141ed012c187817fad')},

{'formula': 'V[+2]',
'molecular_weight': '50.9415 g/mol',
'_id': ObjectId('654e5f141ed012c187817fb2')},

{'formula': 'Yb[+2]',
'molecular_weight': '173.04 g/mol',
'_id': ObjectId('654e5f141ed012c187817fba')},

{'formula': 'Zn[+2]',
'molecular_weight': '65.409 g/mol',
'_id': ObjectId('654e5f141ed012c187817fc2')}]

[13]: # using a comprehension
[doc for doc in IonDB.query({"charge":2}, ["formula","molecular_weight"])]

4.3. Tutorials 25

pyEQL Documentation, Release v0.15.1

[13]: [{'formula': 'Ag[+2]',
'molecular_weight': '107.8682 g/mol',
'_id': ObjectId('654e5f131ed012c187817e6e')},

{'formula': 'Au[+2]',
'molecular_weight': '196.966569 g/mol',
'_id': ObjectId('654e5f131ed012c187817e76')},

{'formula': 'Ba[+2]',
'molecular_weight': '137.327 g/mol',
'_id': ObjectId('654e5f131ed012c187817e83')},

{'formula': 'Be[+2]',
'molecular_weight': '9.012182 g/mol',
'_id': ObjectId('654e5f131ed012c187817e85')},

{'formula': 'Ca[+2]',
'molecular_weight': '40.078 g/mol',
'_id': ObjectId('654e5f131ed012c187817e96')},

{'formula': 'Cd[+2]',
'molecular_weight': '112.411 g/mol',
'_id': ObjectId('654e5f131ed012c187817e9b')},

{'formula': 'Co[+2]',
'molecular_weight': '58.933195 g/mol',
'_id': ObjectId('654e5f131ed012c187817ea9')},

{'formula': 'Cr[+2]',
'molecular_weight': '51.9961 g/mol',
'_id': ObjectId('654e5f131ed012c187817eae')},

{'formula': 'Cu[+2]',
'molecular_weight': '63.546 g/mol',
'_id': ObjectId('654e5f131ed012c187817ebe')},

{'formula': 'Dy[+2]',
'molecular_weight': '162.5 g/mol',
'_id': ObjectId('654e5f131ed012c187817ec0')},

{'formula': 'Eu[+2]',
'molecular_weight': '151.964 g/mol',
'_id': ObjectId('654e5f131ed012c187817ec5')},

{'formula': 'Fe[+2]',
'molecular_weight': '55.845 g/mol',
'_id': ObjectId('654e5f131ed012c187817ecc')},

{'formula': 'Ge[+2]',
'molecular_weight': '72.64 g/mol',
'_id': ObjectId('654e5f131ed012c187817ed1')},

{'formula': 'Hg[+2]',
'molecular_weight': '200.59 g/mol',
'_id': ObjectId('654e5f131ed012c187817ef1')},

{'formula': 'In[+2]',
'molecular_weight': '114.818 g/mol',
'_id': ObjectId('654e5f131ed012c187817ef7')},

{'formula': 'Mg[+2]',
'molecular_weight': '24.305 g/mol',
'_id': ObjectId('654e5f131ed012c187817f26')},

{'formula': 'Mn[+2]',
'molecular_weight': '54.938045 g/mol',
'_id': ObjectId('654e5f131ed012c187817f2a')},

{'formula': 'Nd[+2]',
'molecular_weight': '144.242 g/mol',

(continues on next page)

26 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'_id': ObjectId('654e5f131ed012c187817f4a')},
{'formula': 'Ni[+2]',
'molecular_weight': '58.6934 g/mol',
'_id': ObjectId('654e5f141ed012c187817f4f')},

{'formula': 'Pb[+2]',
'molecular_weight': '207.2 g/mol',
'_id': ObjectId('654e5f141ed012c187817f62')},

{'formula': 'Pd[+2]',
'molecular_weight': '106.42 g/mol',
'_id': ObjectId('654e5f141ed012c187817f63')},

{'formula': 'Po[+2]',
'molecular_weight': '210.0 g/mol',
'_id': ObjectId('654e5f141ed012c187817f65')},

{'formula': 'Pr[+2]',
'molecular_weight': '140.90765 g/mol',
'_id': ObjectId('654e5f141ed012c187817f67')},

{'formula': 'Pt[+2]',
'molecular_weight': '195.084 g/mol',
'_id': ObjectId('654e5f141ed012c187817f69')},

{'formula': 'Ra[+2]',
'molecular_weight': '226.0 g/mol',
'_id': ObjectId('654e5f141ed012c187817f6b')},

{'formula': 'Ru[+2]',
'molecular_weight': '101.07 g/mol',
'_id': ObjectId('654e5f141ed012c187817f7b')},

{'formula': 'Sc[+2]',
'molecular_weight': '44.955912 g/mol',
'_id': ObjectId('654e5f141ed012c187817f87')},

{'formula': 'Sm[+2]',
'molecular_weight': '150.36 g/mol',
'_id': ObjectId('654e5f141ed012c187817f8e')},

{'formula': 'Sn[+2]',
'molecular_weight': '118.71 g/mol',
'_id': ObjectId('654e5f141ed012c187817f90')},

{'formula': 'Sr[+2]',
'molecular_weight': '87.62 g/mol',
'_id': ObjectId('654e5f141ed012c187817f97')},

{'formula': 'Tc[+2]',
'molecular_weight': '98.0 g/mol',
'_id': ObjectId('654e5f141ed012c187817f9b')},

{'formula': 'Ti[+2]',
'molecular_weight': '47.867 g/mol',
'_id': ObjectId('654e5f141ed012c187817f9f')},

{'formula': 'Tm[+2]',
'molecular_weight': '168.93421 g/mol',
'_id': ObjectId('654e5f141ed012c187817fa7')},

{'formula': 'UO2[+2]',
'molecular_weight': '270.02771 g/mol',
'_id': ObjectId('654e5f141ed012c187817fad')},

{'formula': 'V[+2]',
'molecular_weight': '50.9415 g/mol',
'_id': ObjectId('654e5f141ed012c187817fb2')},

(continues on next page)

4.3. Tutorials 27

pyEQL Documentation, Release v0.15.1

(continued from previous page)

{'formula': 'Yb[+2]',
'molecular_weight': '173.04 g/mol',
'_id': ObjectId('654e5f141ed012c187817fba')},

{'formula': 'Zn[+2]',
'molecular_weight': '65.409 g/mol',
'_id': ObjectId('654e5f141ed012c187817fc2')}]

Counting Documents

You can use count() to see how many documents the database contains

[14]: IonDB.count()

[14]: 346

Count works with queries, too.

[15]: # number of documents with a charge of -3
IonDB.count({"charge": -3})

[15]: 7

More Advanced Query Syntax

Match multiple items with $in

If you want to query documents that match any one of a set of values, use $in with a list of possible values. Note
that the $in operator and your list constitute their own dictionary, e.g. {"$in":<list>}. This entire dictionary is
the “value” of your query for the associated field. For example:

[16]: # all alkali cations
IonDB.count({"formula":

{"$in": ["Li[+1]", "Na[+1]", "K[+1]", "Rb[+1]", "Cs[+1]"]}
}
)

[16]: 5

Greater than or less than - $gt / $gte / $lt / $lte

In a similar manner, you can query fields whose values are greater than / less than or equal to some value

[17]: # all solutes with a charge less than 0
IonDB.count({"charge":

{"$lt": 0}
}
)

[17]: 76

28 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

[18]: # all solutes with a charge greater than or equal to 1
IonDB.count({"charge":

{"$gte": 1}
}
)

[18]: 108

Unique Values

It’s often useful to understand how many unique values of a field there are. To do so, use distinct() with any field
name

[19]: # list of all unique `formula`
IonDB.distinct('formula')

[19]: ['U(ClO5)2(aq)',
'LiClO4(aq)',
'Sb(OH)6[-1]',
'Ba[+2]',
'RbNO3(aq)',
'KBrO3(aq)',
'H3O[+1]',
'CsNO2(aq)',
'Re[+1]',
'KHC2O.1H2O(aq)',
'Ni[+3]',
'H8S(NO2)2(aq)',
'Sm[+2]',
'B(OH)4[-1]',
'CoI2(aq)',
'ZnBr2(aq)',
'Sn[+2]',
'USO6(aq)',
'Ir[+3]',
'Ag(CN)2[-1]',
'KNO3(aq)',
'Ga[+3]',
'Zn(NO3)2(aq)',
'NaHC3.2H2O(aq)',
'Ni(NO3)2(aq)',
'S[-2]',
'HS[-1]',
'Eu[+2]',
'ZnSO4(aq)',
'BeSO4(aq)',
'MnO4[-1]',
'K2CO3(aq)',
'Pa[+3]',
'SrI2(aq)',
'FeCl2(aq)',
'Eu(NO3)3(aq)',

(continues on next page)

4.3. Tutorials 29

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'NaClO4(aq)',
'Zn[+2]',
'SeO4[-1]',
'NaCrO4(aq)',
'CsOH(aq)',
'Na3PO4(aq)',
'KCSN(aq)',
'HSO4[-1]',
'Mn[+3]',
'H4NClO4(aq)',
'NiSO4(aq)',
'IO4[-1]',
'Sr(ClO4)2(aq)',
'SeO4[-2]',
'Ag[+1]',
'LiI(aq)',
'SiF6[-2]',
'HF2[-1]',
'CoBr2(aq)',
'Pr[+3]',
'BaBr2(aq)',
'ClO2[-1]',
'MgBr2(aq)',
'Ho[+3]',
'Be[+2]',
'H2O(aq)',
'Po[+2]',
'P2O7[-4]',
'RbCl(aq)',
'K[+1]',
'ClO4[-1]',
'Mg(ClO4)2(aq)',
'NdCl3(aq)',
'Au[+1]',
'Rb2SO4(aq)',
'Na2PHO4(aq)',
'Th[+4]',
'Fe[+3]',
'Ra[+2]',
'Tl(NO3)3(aq)',
'Rb[+1]',
'KF(aq)',
'Gd[+3]',
'NiCl2(aq)',
'Rh[+3]',
'Ag[+3]',
'Cd(ClO4)2(aq)',
'FeCl3(aq)',
'NO3[-1]',
'MoO4[-2]',
'Tl[+3]',
'CuSO4(aq)',

(continues on next page)

30 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'Tm[+3]',
'OH[-1]',
'Zn(ClO4)2(aq)',
'Th(NO3)4(aq)',
'HNO3(aq)',
'AgNO3(aq)',
'Cr(NO3)3(aq)',
'Tl(NO2)3(aq)',
'CaI2(aq)',
'Pt[+2]',
'U(NO4)2(aq)',
'LiNO2(aq)',
'Na2CO3(aq)',
'Np[+4]',
'LiNO3(aq)',
'VO2[+1]',
'KCrO4(aq)',
'PO4[-3]',
'Ca(NO3)2(aq)',
'Li[+1]',
'SrCl2(aq)',
'KPO3.1H2O(aq)',
'CH3COO[-1]',
'PrCl3(aq)',
'In[+3]',
'ZnI2(aq)',
'SmCl3(aq)',
'KI(aq)',
'K3Fe(CN)6(aq)',
'CdSO4(aq)',
'GdCl3(aq)',
'Os[+3]',
'LiHC2O.1H2O(aq)',
'Sr(NO3)2(aq)',
'H2SO4(aq)',
'Hg[+2]',
'NaNO2(aq)',
'Cd[+2]',
'H5N2[+1]',
'Mg(NO3)2(aq)',
'KClO3(aq)',
'P(OH)2[-1]',
'Sn[+4]',
'Tm[+2]',
'U(ClO)2(aq)',
'HCO2[-1]',
'BO2[-1]',
'KBr(aq)',
'K2SO4(aq)',
'SeO3[-1]',
'Ta[+3]',
'YNO3(aq)',

(continues on next page)

4.3. Tutorials 31

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'Cu[+1]',
'Er[+3]',
'Al[+3]',
'HSO3[-1]',
'Tl[+1]',
'BrO3[-1]',
'Li2SO4(aq)',
'Co[+2]',
'ZnCl2(aq)',
'HO2[-1]',
'I[-1]',
'Au[+3]',
'CSN[-1]',
'NaHCO2(aq)',
'Ca[+2]',
'P(HO2)2[-1]',
'Ba(NO3)2(aq)',
'Dy[+2]',
'Cs2SO4(aq)',
'F[-1]',
'Pb[+2]',
'EuCl3(aq)',
'Ca(ClO4)2(aq)',
'Al2(SO4)3(aq)',
'PH9(NO2)2(aq)',
'RbBr(aq)',
'CuCl2(aq)',
'Co(H3N)6[-3]',
'Pb(NO3)2(aq)',
'CSeN[-1]',
'Ce[+3]',
'RbOH(aq)',
'P3O10[-5]',
'NaOH(aq)',
'Sm[+3]',
'Yb[+3]',
'C2N3[-1]',
'BaC4O.3H2O(aq)',
'Fe(CN)6[-3]',
'RbNO2(aq)',
'Re[+3]',
'LaCl3(aq)',
'CrO4[-2]',
'H[+1]',
'K3PO4(aq)',
'Ce[+4]',
'Cu[+2]',
'H2CO3(aq)',
'BaCl2(aq)',
'NaBrO3(aq)',
'Zr[+4]',
'CsI(aq)',

(continues on next page)

32 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'CoCl2(aq)',
'Ac[+3]',
'Ti[+2]',
'Nd(NO3)3(aq)',
'NaBr(aq)',
'La(NO3)3(aq)',
'MgC4O.3H2O(aq)',
'PO3[-1]',
'CrCl3(aq)',
'U[+3]',
'HCl(aq)',
'Tc[+2]',
'Au(CN)4[-1]',
'HOsO5[-1]',
'WO4[-1]',
'PHO4[-2]',
'ClO3[-1]',
'K4Fe(CN)6(aq)',
'Br[-0.33333333]',
'Sr[+2]',
'Cr[+3]',
'UO2[+2]',
'Ni[+2]',
'Tl(ClO4)3(aq)',
'Pu[+4]',
'NaHC2O.1H2O(aq)',
'MgI2(aq)',
'TlH(C3O)2.4H2O(aq)',
'Co(CN)6[-3]',
'K2PHO4(aq)',
'Mn[+2]',
'NaNO3(aq)',
'ScCl3(aq)',
'CeCl3(aq)',
'MnSO4(aq)',
'Ru[+3]',
'CsNO3(aq)',
'HCO3[-1]',
'H4NCl(aq)',
'Ag[+2]',
'Nb[+3]',
'CNO[-1]',
'H4IN(aq)',
'In[+1]',
'Ge[+2]',
'HI(aq)',
'ReO4[-1]',
'MgCl2(aq)',
'CsF(aq)',
'N[-0.33333333]',
'HClO4(aq)',
'CsCl(aq)',

(continues on next page)

4.3. Tutorials 33

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'KHCO3(aq)',
'La[+3]',
'Ba(ClO4)2(aq)',
'Bi[+3]',
'CaBr2(aq)',
'Yb[+2]',
'CaCl2(aq)',
'UO2[+1]',
'Mo[+3]',
'KClO4(aq)',
'KOH(aq)',
'LiBr(aq)',
'SO3[-1]',
'NaPO3.1H2O(aq)',
'AsO4[-3]',
'Br[-1]',
'Dy[+3]',
'IO3[-1]',
'Sc[+3]',
'H2SNO3[-1]',
'Np[+3]',
'Fe(CN)6[-4]',
'RbHC2O.1H2O(aq)',
'Nd[+2]',
'Pr[+2]',
'HBr(aq)',
'MgSO4(aq)',
'PO3F[-2]',
'RbI(aq)',
'Cu[+3]',
'Pm[+3]',
'H4BrN(aq)',
'MnCl2(aq)',
'CsHC2O.1H2O(aq)',
'Y[+3]',
'Hf[+4]',
'Na[+1]',
'H5C6O7[-3]',
'Co(NO3)2(aq)',
'NaCSN(aq)',
'NaHCO3(aq)',
'CsBr(aq)',
'W[+3]',
'NO2[-1]',
'V[+2]',
'SO4[-1]',
'B(OH)3(aq)',
'KCl(aq)',
'Cl[-1]',
'SrBr2(aq)',
'PF6[-1]',
'YCl3(aq)',

(continues on next page)

34 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

'Pb(ClO4)2(aq)',
'Co[+3]',
'S2O3[-2]',
'H4N2O3(aq)',
'Cr[+2]',
'NaF(aq)',
'H4N[+1]',
'Au(CN)2[-1]',
'SO4[-2]',
'Tc[+3]',
'NaCl(aq)',
'Eu[+3]',
'Ru[+2]',
'V[+3]',
'Cu(NO3)2(aq)',
'Fe[+2]',
'Nd[+3]',
'SO3[-2]',
'BF4[-1]',
'Sb(HO2)2[-1]',
'B(H5C6)4[-1]',
'Mg[+2]',
'Cd(NO2)2(aq)',
'SO2[-1]',
'NaI(aq)',
'Ti[+3]',
'Cs[+1]',
'HSeO3[-1]',
'LiOH(aq)',
'LiCl(aq)',
'RbF(aq)',
'WO4[-2]',
'Pd[+2]',
'Tb[+3]',
'In[+2]',
'Re[-1]',
'Na2S2O3(aq)',
'KNO2(aq)',
'TcO4[-1]',
'U[+4]',
'BaI2(aq)',
'CO3[-2]',
'H4SNO4(aq)',
'CN[-1]',
'Sc[+2]',
'Cd(NO3)2(aq)',
'Na2SO4(aq)',
'IrO4[-1]',
'Lu[+3]',
'Au[+2]']

4.3. Tutorials 35

pyEQL Documentation, Release v0.15.1

4.4 Installing

4.4.1 Use a conda environment

We highly recommend installing python in an isolated environment using conda (or its speedier, backward-compatible
successor, mamba). In particular, we recommend the miniforge or mambaforge distributions of Python, which are
lightweight distributions of conda that automatically activate the conda-forge channel for up-to-date scientific pack-
ages.

Note: If you are on a Windows machine, we recommend you install the Windows Subsystem for Linux (WSL) and set
up your conda environments inside the WSL environment.

After installing conda / mamba, follow their instructions to create an environment. The steps should be similar to the
following:

1. Open your terminal (or “Anaconda prompt” or “Miniforge prompt” on Windows)

2. Pick a name for your environment (note: you can create many environments if you want)

3. type conda create -n <name-you-picked> python=3.10 (if you install miniforge) or mamba create -n
<name-you-picked> python=3.10 (if you installed mambaforge) and press enter

4. After the environment is installed, type conda activate <name-you-picked> / mamba activate
<name-you-picked> and press enter

4.4.2 pip install

Once Python is installed and your environment is activated you can install pyEQL from PyPi by typing the following
command:

pip install pyEQL

This should automatically pull in the required dependencies as well.

Important: If you are NOT using a conda environment, may have to run ‘pip3’ rather than ‘pip’. This will be the
case if Python 2.x and Python 3.x are installed side-by-side on your system. You can tell if this is the case by typing
the following command:

$ python --version
Python 2.7.12

This means Python 2.x is installed. If you run ‘pip install’ it will point to the Python 2.7 installation, but pyEQL only
works on Python 3. So, try this:

$ python3 --version
Python 3.9.7

To get to Python 3.x, you have to type ‘python3’. In this case, you would run ‘pip3 install’

36 Chapter 4. Contents:

https://docs.conda.io/en/latest/
https://mamba.readthedocs.io/en/latest/
https://github.com/conda-forge/miniforge#miniforge3
https://github.com/conda-forge/miniforge#mambaforge
https://learn.microsoft.com/en-us/windows/wsl/install
https://pypi.python.org/pypi

pyEQL Documentation, Release v0.15.1

Warning: If you are using a Mac with an Apple M1, M2, etc. chip (i.e., Arm64 architecture), some features of
pyEQL will be unavailable. Specifically, anything which depends on PHREEQC (e.g., the equilibrate method
in the native engine and the entire phreeqc engine) will not work. This is because phreeqpython is currently not
available for this platform. All other functions of pyEQL should work as expected.

Feel free to post your experiences or proposed solutions at https://github.com/KingsburyLab/pyEQL/issues/109

4.4.3 Other dependencies

pyEQL also requires the following packages:

• pint - for automated unit conversion

• pymatgen - used to interpret chemical formulas

• iapws - used to calculate the properties of water

• monty - used for saving and loading Solution objects to files

• maggma - used by the internal property database

• scipy

• numpy

If you use pip to install pyEQL (recommended), they should be installed automatically.

4.4.4 Installing the development branch

If you want to use the bleeding edge version before it is released to PyPi instead of the latest stable release, you can
substitute the following for the above ‘pip install’ command:

pip install git+https://github.com/KingsburyLab/pyEQL.git@main

4.4.5 Manually install via Git

Simply navigate to a directory of your choice on your computer and clone the repository by executing the following
terminal command:

git clone https://github.com/KingsburyLab/pyEQL

Then install by executing:

pip install -e pyEQL

Note: You may have to run ‘pip3’ rather than ‘pip’. See the note in the pip install section.

4.4. Installing 37

https://github.com/KingsburyLab/pyEQL/issues/109
https://github.com/hgrecco/pint
https://github.com/materialsproject/pymatgen/
https://github.com/jjgomera/iapws/
https://github.com/materialsvirtuallab/monty
https://materialsproject.github.io/maggma/
http://scipy.org/
http://numpy.org/

pyEQL Documentation, Release v0.15.1

4.5 Creating a Solution

The Solution class defines a pythonic interface for creating, modifying, and estimating properties of electrolyte
solutions. It is the core feature of pyEQL and the primary user-facing class. There are several ways to create a Solution.

4.5.1 Empty solution

With no input arguments, you get an empty Solution at pH 7 and 1 atm pressure.

>>> from pyEQL import Solution
>>> s = Solution()
>>> print(s)
Volume: 1.000 l
Pressure: 1.000 atm
Temperature: 298.150 K
Components: ['H2O(aq)', 'H[+1]', 'OH[-1]']

4.5.2 Manual Creation

Typically, you will create a solution by specifying a list of solutes. Solutes are passed as a dict with amounts given
as strings that include units (see units). Any unit that can be understood by get_amount is valid.

>>> from pyEQL import Solution
>>> s = Solution({"Na+": "0.5 mol/L", "Cl-": "0.5 mol/L"})

You can also specify conditions such as temperature, pressure, pH, and pE (redox potential).

Finally, you can manually create a solution with any list of solutes, temperature, pressure, etc. that you need:

>>> from pyEQL import Solution
>>> s1 = Solution(solutes={'Na+':'0.5 mol/kg', 'Cl-': '0.5 mol/kg'},

pH=8,
temperature = '20 degC',
volume='8 L',
pE = 4,
)

4.5.3 Using a preset

Alternatively, you can use the Solution.from_preset() classmethod to easily create common solutions like seawa-
ter:

>>> from pyEQL import Solution
>>> s2 = Solution.from_preset('seawater')
<pyEQL.solution.Solution object at 0x7f057de6b0a0>

38 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

4.5.4 From a dictionary

If you have converted a Solution to a dict, you can re-instantiate it using the Solution.from_dict() class method.

4.5.5 From a file

If you save a Solution to a .json file, you can recreate it using monty.serialization.loadfn

>>> from monty.serialization import loadfn
>>> s = loadfn('test.json')
print(s)
Volume: 1.000 l
Pressure: 1.000 atm
Temperature: 298.150 K
Components: ['H2O(aq)', 'H[+1]', 'OH[-1]']

4.6 Writing Formulas

pyEQL interprets the chemical formula of a substance to calculate its molecular weight and formal charge. The formula
is also used as a key to search the property database for parameters (e.g. diffusion coefficient) that are used in subsequent
calculations.

4.6.1 How to Enter Valid Chemical Formulas

Generally speaking, type the chemical formula of your solute the “normal” way and pyEQL should be able to interpret it.
Internally, pyEQL uses a utility function pyEQL.utils.standardize_formula to process all formulas into a standard
form. At present, this is done by passing the formula through the pymatgen.core.ion.Ion class. Anything that the
Ion class can understand will be processed into a valid formula by pyEQL.

Here are some examples:

Substance You enter pyEQL understands
Sodium Chloride “NaCl”, “NaCl(aq)”, or “ClNa” “NaCl(aq)”
Sodium Sulfate “Na2(SO4)” or “Na2SO4” “Na(SO4)(aq)”
Sodium Ion “Na+”, “Na+1”, “Na1+”, or “Na[+]” “Na[+1]”
Magnesium Ion “Mg+2”, “Mg++”, or “Mg[++]” “Mg[+2]”
Methanol “CH3OH”, “CH4O” “‘CH3OH(aq)’”

Specifically, standardize_formula uses Ion.from_formula(<formula>).reduced_formla (shown in the right
hand column of the table) to identify solutes. Notice that for charged species, the charges are always placed inside
square brackets (e.g., Na[+1]) and always include the charge number (even for monovalent ions). Uncharged species
are always suffixed by (aq) to disambiguate them from solids.

Important: When writing multivalent ion formulas, it is strongly recommended that you put the charge number
AFTER the + or - sign (e.g., type “Mg+2” NOT “Mg2+”). The latter formula is ambiguous - it could mean 𝑀𝑔+2 or
𝑀𝑔+2 and it will be processed incorrectly into Mg[+0.5]

4.6. Writing Formulas 39

https://pythonhosted.org/monty/monty.html#module-monty.serialization
https://pymatgen.org/pymatgen.core.html#pymatgen.core.ion.Ion

pyEQL Documentation, Release v0.15.1

4.6.2 Manually testing a formula

If you want to make sure pyEQL is understanding your formula correctly, you can manually test it as follows:

>>> from pyEQL.utils import standardize_formula
>>> standardize_formula(<your_formula>)
...

4.6.3 Formulas you will see when using Solution

When using the Solution class,

• When creating a Solution, you can enter chemical formulas in any format you prefer, as long as
standardize_formula can understand it (see manual testing).

• The keys (solute formulas) in Solution.components are standardized. So if you entered Na+ for sodium ion,
it will appear in components as Na[+1].

• However, the components attribute is a special dictionary that automatically standardizes formulas when ac-
cessed. So, you can still enter the formula however you want. For example, the following all access or modify
the same element in components:

>>> Solution.components.get('Na+')
>>> Solution.components["Na+1"]
>>> Solution.components.update("Na[+]": 2)
>>> Solution.components["Na[+1]"]

• Arguments to Solution.get_property can be entered in any format you prefer. When pyEQL queries the
database, it will automatically standardize the formula.

• Property data in the database is uniquely identified by the standardized ion formula (output of Ion.
from_formula(<formula>).reduced_formla, e.g. “Na[+1]” for sodium ion).

4.7 Converting Units

pyEQL uses pint to automatically interpret and convert units. For this reason, many quantitative arguments are passed
to functions as strings rather than numbers. For example, to specify temperature, you pass temperature='298 K'
and NOT temperature=298.

4.7.1 Quantity objects

Most Solution class methods return pint Quantity objects.

>>> from pyEQL import Solution
>>> s = Solution()
>>> s.pressure
<Quantity(1, 'standard_atmosphere')>

If you want to create a simple Quantity not attached to a Solution, you can do so as follows:

>>> from pyEQL import ureg
>>> q = ureg.Quantity('1 m')

40 Chapter 4. Contents:

https://pint.readthedocs.io/en/stable/

pyEQL Documentation, Release v0.15.1

Quantity objects have three important attributes: magnitude, units, and dimensionality. To get the numerical
value, call magnitude

>>> from pyEQL import ureg
>>> q = ureg.Quantity('1 m')
>>> q.magnitude
1

Similarly, to get the units, call units

>>> from pyEQL import ureg
>>> q = ureg.Quantity('1 m')
>>> q.units
<Unit('meter')>

To convert from one unit to another, use to():

>>> from pyEQL import ureg
>>> q = ureg.Quantity('1 m')
>>> q.to('ft')
<Quantity(3.2808399, 'foot')>

If you encounter a DimensionalityError when working with pyEQL, it probably means you are trying to do an
operation on two quantities with incompatible units (or perhaps on a Quantity and a regular float or int). For
example, you can’t convert m into m**3:

>>> from pyEQL import ureg
>>> q = ureg.Quantity('1 m')
>>> q.to('m^3')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/ryan/mambaforge/envs/pbx/lib/python3.10/site-packages/pint/facets/plain/

→˓quantity.py", line 517, in to
magnitude = self._convert_magnitude_not_inplace(other, *contexts, **ctx_kwargs)

File "/home/ryan/mambaforge/envs/pbx/lib/python3.10/site-packages/pint/facets/plain/
→˓quantity.py", line 462, in _convert_magnitude_not_inplace
return self._REGISTRY.convert(self._magnitude, self._units, other)

File "/home/ryan/mambaforge/envs/pbx/lib/python3.10/site-packages/pint/facets/plain/
→˓registry.py", line 961, in convert
return self._convert(value, src, dst, inplace)

File "/home/ryan/mambaforge/envs/pbx/lib/python3.10/site-packages/pint/facets/context/
→˓registry.py", line 403, in _convert
return super()._convert(value, src, dst, inplace)

File "/home/ryan/mambaforge/envs/pbx/lib/python3.10/site-packages/pint/facets/
→˓nonmultiplicative/registry.py", line 254, in _convert
return super()._convert(value, src, dst, inplace)

File "/home/ryan/mambaforge/envs/pbx/lib/python3.10/site-packages/pint/facets/plain/
→˓registry.py", line 1000, in _convert
raise DimensionalityError(src, dst, src_dim, dst_dim)

pint.errors.DimensionalityError: Cannot convert from 'meter' ([length]) to 'meter ** 3'␣
→˓([length] ** 3)

Refer to the pint documentation for more etails about working with Quantity.

4.7. Converting Units 41

https://pint.readthedocs.io/en/stable/

pyEQL Documentation, Release v0.15.1

Note: Note that the meaning of ureg is equivalent in the above pyEQL examples and in the pint documentation. pyEQL
instantiates its own UnitRegistry (with custom definitions for solution chemistry) and assigns it to the variable ureg.
In most pint examples, the line ureq = UnitRegistry() does the same thing.

Important: if you use pyEQL in conjunction with another module that also uses pint for units-aware calculations,
you must convert all Quantity objects to strings before passing them to the other module, as pint cannot perform
mathematical operations on units that belong to different “registries.” See the pint documentation for more details.

4.7.2 Custom Units

pyEQL extends the pint unit library to include some additional units that are commonly encountered in solution chem-
istry.

4.8 Getting Concentrations

4.8.1 Get the amount of a specific solute

To get the amount of a specific solute, use get_amount() and specify the units you want:

>>> from pyEQL import Solution
>>> s = Solution({"Mg+2": "0.5 mol/L", "Cl-": "1.0 mol/L"})
>>> s.get_amount('Mg[+2]', 'mol')
<Quantity(0.5, 'mole')>

get_amount is highly flexible with respect to the types of units it can interpret. You can request amounts in moles,
mass, or equivalents (i.e., charge-weighted moles) per unit of mass or volume.

>>> s.get_amount('Mg[+2]', 'M')
<Quantity(0.5, 'molar')>
>>> s.get_amount('Mg[+2]', 'm')
<Quantity(0.506124103, 'mole / kilogram')>
>>> s.get_amount('Mg[+2]', 'eq/L')
<Quantity(1.0, 'mole / liter')>
>>> s.get_amount('Mg[+2]', 'ppm')
<Quantity(12152.5, 'milligram / liter')>
>>> s.get_amount('Mg[+2]', 'ppb')
<Quantity(12152500.0, 'microgram / liter')>
>>> s.get_amount('Mg[+2]', 'ppt')
<Quantity(1.21525e+10, 'nanogram / liter')>

Important: The unit 'ppt' is ambiguous in the water community. To most researchers, it means “parts per trillion”
or ng/L, while to many engineers and operators it means “parts per THOUSAND” or g/L. pyEQL interprets ppt as
parts per trillion.

You can also request dimensionless concentrations as weight percent ('%'), mole fraction ('fraction') or the total
number of particles in the solution ('count', useful for setting up simulation boxes).

42 Chapter 4. Contents:

http://pint.readthedocs.io/
http://pint.readthedocs.io/

pyEQL Documentation, Release v0.15.1

>>> s.get_amount('Mg[+2]', '%')
<Quantity(1.17358141, 'dimensionless')>
>>> s.get_amount('Mg[+2]', 'fraction')
<Quantity(0.00887519616, 'dimensionless')>
>>> s.get_amount('Mg[+2]', 'count')
<Quantity(3.01107038e+23, 'dimensionless')>

4.8.2 See all components in the solution

You can inspect the solutes present in the solution via the components attribute. This comprises a dictionary of solute
formula: moles, where ‘moles’ is the number of moles of that solute in the Solution. Note that the solvent (water) is
present in components, too. components is reverse sorted, with the most predominant component (i.e., the solvent)
listed first.

>>> from pyEQL import Solution
>>> s = Solution({"Mg+2": "0.5 mol/L", "Cl-": "1.0 mol/L"})
>>> s.components
{'H2O(aq)': 54.83678280993063, 'Cl[-1]': 1.0, 'Mg[+2]': 0.5, 'H[+1]': 1e-07, 'OH[-1]':␣
→˓1e-07}

Similarly, you can use the properties anions, cations, neutrals, and solvent to retrieve subsets of components:

>>> s.anions
{'Cl[-1]': 1.0, 'OH[-1]': 1e-07}
>>> s.cations
{'Mg[+2]': 0.5, 'H[+1]': 1e-07}
>>> s.neutrals
{'H2O(aq)': 54.83678280993063}
>>> s.solvent
'H2O(aq)'

Like components, all of the above dicts are sorted in order of decreasing amount.

4.8.3 Salt vs. Solute Concentrations

Sometimes the concentration of a dissolved salt (e.g., MgCl2) is of greater interest than the concentrations of the
individual solutes (Mg+2 and Cl-). pyEQL has the ability to interpret a Solution composition and represent it as a
mixture of salts.

To retrieve only the predominant salt (i.e., the salt with the highest concentration), use get_salt. This returns a Salt
object with several useful attributes.

>>> from pyEQL import Solution
>>> s = Solution({"Mg+2": "0.4 mol/L", "Na+": "0.1 mol/L", "Cl-": "1.0 mol/L"})
>>> s.get_salt()
<pyEQL.salt_ion_match.Salt object at 0x7f0ded09fd30>
>>> s.get_salt().formula
'MgCl2'
>>> s.get_salt().anion
'Cl[-1]'
>>> s.get_salt().z_cation

(continues on next page)

4.8. Getting Concentrations 43

pyEQL Documentation, Release v0.15.1

(continued from previous page)

2.0
>>> s.get_salt().nu_anion
2

To see a dict of all the salts in given solution, use get_salt_dict(). This method returns a dict keyed by the salt’s
formula, where the values are Salt objects converted into dictionaries. All the usual attributes like anion, z_cation
etc. are accessible in the corresponding keys. Each value also contains a mol key giving the moles of the salt present.

>>> from pyEQL import Solution
>>> s = Solution({"Mg+2": "0.4 mol/L", "Na+": "0.1 mol/L", "Cl-": "1.0 mol/L"})
>>> s.get_salt_dict()
{'MgCl2': {'@module': 'pyEQL.salt_ion_match',

'@class': 'Salt', '@version': '0.5.2',
'cation': 'Mg[+2]',
'anion': 'Cl[-1]',
'mol': 0.4},

'NaCl': {'@module': 'pyEQL.salt_ion_match',
'@class': 'Salt', '@version': '0.5.2',
'cation': 'Na[+1]',
'anion': 'Cl[-1]',
'mol': 0.1},

'NaOH': {'@module': 'pyEQL.salt_ion_match',
'@class': 'Salt', '@version': '0.5.2',
'cation': 'Na[+1]',
'anion': 'OH[-1]',
'mol': 1e-07}

}

Refer to the Salt Matching module reference for more details.

4.8.4 Total Element Concentrations

“Total” concentrations (i.e., concentrations of all species containing a particular element) are important for certain types
of equilibrium calculations. These can be retrieved via get_total_amount. get_total_amount takes an element
name as the first argument, and a unit as the second.

>>> from pyEQL import Solution
>>> s = Solution({"Mg+2": "0.5 mol/L", "Cl-": "1.0 mol/L"})
>>> s.equilibrate()
>>> s.components
{'H2O(aq)': 54.85346847938828, 'Cl[-1]': 0.9186683796593457, 'Mg[+2]': 0.
→˓41866839204646417, 'MgCl[+1]': 0.08133160795194606, 'OH[-1]': 1.4679440802358093e-07,
→˓'H[+1]': 1.1833989847708719e-07, 'HCl(aq)': 1.2388705241250352e-08, 'MgOH[+1]': 3.
→˓9747494391744955e-13, 'O2(aq)': 7.027122927701743e-25, 'HClO(aq)': 1.5544872892067526e-
→˓27, 'ClO[-1]': 6.339364938003202e-28, 'H2(aq)': 5.792559717610837e-35, 'ClO2[-1]': 0.0,
→˓ 'ClO3[-1]': 0.0, 'ClO4[-1]': 0.0, 'HClO2(aq)': 0.0}
>>> s.get_total_amount('Mg', 'mol')
<Quantity(0.5, 'mole')>

44 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

4.8.5 Elements present in a Solution

If you just want to know the elements present in the Solution, use elements. This returns a list of elements, sorted
alphabetically.

>>> from pyEQL import Solution
>>> s = Solution({"Mg+2": "0.5 mol/L", "Cl-": "1.0 mol/L"})
>>> s.elements
['Cl', 'H', 'Mg', 'O']

4.9 Arithmetic Operations

4.9.1 Addition and Subtraction

You can use the + operator to mix (combine) two solutions. The moles of each component in the two solutions will
be added together, and the volume of the mixed solution will be approximately equal to the sum of the two volumes,
depending on the electrolyte modeling engine used. The pressure and temperature of the mixed solution are computed
as volume-weighted averages.

>>> from pyEQL import Solution
>>> s1 = Solution({"Na+": "0.5 mol/L", "Cl-": "0.5 mol/L"})
>>> s2 = Solution({"Na+": "0.1 mol/L", "Cl-": "0.1 mol/L"})
>>> s1+s2
<pyEQL.solution.Solution object at 0x7f171aee3af0>
>>> (s1+s2).get_amount('Na+', 'mol')
<Quantity(0.6, 'mole')>
>>> (s1+s2).volume
<Quantity(1.99989659, 'liter')>

Note: Both Solution involved in an addition operation must use the same electrolyte modeling engine.

Subtraction is not implemented and will raise a NotImplementedError.

>>> s1-s2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/ryan/mambaforge/envs/pbx/code/pyEQL/src/pyEQL/solution.py", line 2481, in _

→˓_sub__
raise NotImplementedError("Subtraction of solutions is not implemented.")

NotImplementedError: Subtraction of solutions is not implemented.

4.9. Arithmetic Operations 45

pyEQL Documentation, Release v0.15.1

4.9.2 Multiplication and Division

The * and / operators scale the volume and all component amounts by a factor.

from pyEQL import Solution
>>> s = Solution({"Na+": "0.2 mol/L", "Cl-": "0.2 mol/L"})
>>> s.volume
<Quantity(1, 'liter')>
>>> s.get_amount('Cl-', 'mol')
<Quantity(0.2, 'mole')>
>>> s*=1.5
<Quantity(1.5, 'liter')>
s.get_amount('Cl-', 'mol')
<Quantity(0.3, 'mole')>

The modulo operator // is not implemented.

4.10 Saving and Loading from Files

4.10.1 Serialization to dict

Any Solution can be converted into a dict by calling as_dict:

>>> from pyEQL import Solution
>>> s = Solution({"Na+": "0.5 mol/L", "Cl-": "0.5 mol/L"})
>>> s.as_dict()
{'@module': 'pyEQL.solution', '@class': 'Solution', '@version': '0.5.2', 'solutes': {
→˓'H2O(aq)': '55.34455402076251 mol', 'H[+1]': '1e-07 mol', 'OH[-1]': '1e-07 mol'},
→˓'volume': '1 l', 'temperature': '298.15 K', 'pressure': '1 atm', 'pH': 7.0, 'pE': 8.5,
→˓'balance_charge': None, 'solvent': 'H2O(aq)', 'engine': 'native', 'database': {'@module
→˓': 'maggma.stores.mongolike', '@class': 'JSONStore', '@version': '0.19.1.post1.
→˓dev1792+g0517496', 'paths': ['/home/ryan/mambaforge/envs/pbx/code/pyEQL/src/pyEQL/
→˓database/pyeql_db.json'], 'read_only': True, 'serialization_option': None,
→˓'serialization_default': None, 'key': 'formula'}}

This dict can be stored in a database or used to recreate the Solution using from_dict().

4.10.2 Saving to a .json file

Solution can be serialized (and later recreated from) a .json file using to_file, which is based on monty.
serializtaion.dumpfn.

>>> from pyEQL import Solution
>>> s = Solution({"Na+": "0.5 mol/L", "Cl-": "0.5 mol/L"})
>>> s.to_file('test.json')

46 Chapter 4. Contents:

https://pythonhosted.org/monty/monty.html#module-monty.serialization
https://pythonhosted.org/monty/monty.html#module-monty.serialization

pyEQL Documentation, Release v0.15.1

4.10.3 Loading from a .json file

Similarly, from_file (based on monty.serialization.loadfn) can be used to create a Solution from a compatible .
json file.

>>> from pyEQL import Solution
>>> s = Solution.from_file('test.json')
<pyEQL.solution.Solution object at 0x7febf742d8a0>
>>> print(s)
Volume: 1.000 l
Pressure: 1.000 atm
Temperature: 298.150 K
Components: ['H2O(aq)', 'H[+1]', 'OH[-1]']

4.11 Electrolyte Modeling Engines

4.11.1 Overview

Every Solution is instantiated with an electrolyte modeling “engine”, which is a subclass of pyEQL.engine.EOS.
The modeling engine performs three functions:

1. Calculate species activity and osmotic coefficients via get_activity_coefficient and
get_osmotic_coefficient, respectively

2. Update the composition of the Solution (i.e., speciation) via equilibrate

3. Calculate the volume occupied by the solutes via get_solute_volume

All other calculations are performed directly by the Solution class and are the same, regardless of the engine
selected
The purpose of this architecture is to allow Solution to provide a consistent interface for working with electrolyte
solutions, but allow the underlying models to be customized as needed to particular use cases.

pyEQL currently supports three modeling engines: ideal, native, and phreeqc, which are selected via the engine
kwarg to Solution.__init__(). Each engine is briefly described below.

Warning: If you are using a Mac with an Apple M1, M2, etc. chip (i.e., Arm64 architecture), some features of
pyEQL will be unavailable. Specifically, anything which depends on PHREEQC (e.g., the equilibrate method
in the native engine and the entire phreeqc engine) will not work. This is because phreeqpython is currently not
available for this platform. All other functions of pyEQL should work as expected.

Feel free to post your experiences or proposed solutions at https://github.com/KingsburyLab/pyEQL/issues/109

4.11. Electrolyte Modeling Engines 47

https://pythonhosted.org/monty/monty.html#module-monty.serialization
https://github.com/KingsburyLab/pyEQL/issues/109

pyEQL Documentation, Release v0.15.1

4.11.2 The 'native' engine (Default)

The native engine is the default choice and was the only option available prior to version 0.6.0.

Activity and osmotic coefficients

Activity coefficients are calculated using the “effetive Pitzer model” of Mistry et al. when possible. pyEQL selects
parameters by identifying the predominant salt in the solution (see Salt Matching). The ionic strength is calculated
based on all solutes, but only the predominant salt parameters are used in the Pitzer calculation.

If the required parameters are not available in the property database, the native engine decays gracefully through
several models more appropriate for dilute solutions, including Davies, Guntelberg, and Debye-Huckel. See the module
reference for full details.

Solute volumes

Solute volumes are also calculated according to the Pitzer model whenever parameters are available. Specifically, the
apparent molar volume of the primary salt is calculated via Pitzer. The volumes of all other components (except the
solvent, water) are added based on fixed partial molar volumes, if the data are available in the property database. If
data are not available, the volume for that solute is not accounted for.

Speciation

Speciation calculations are provided by PHREEQC via phreeqpython. We use the llnl.dat PHREEQC database
due to its applicability for moderate salinity water and the large number of species included (see Lu et al.). See pyEQL.
equilibrium.eqiulibrate_phreeqc in the module reference for more details.

Warning: Speciation support was added to the native engine in v0.8.0 and should be considered experimen-
tal. Specifically, because the native engine uses a non-Pitzer PHREEQC database for speciation but uses the
Pitzer model (when possible) for activity coefficients. As such, there may be subtle thermodynamic inconsistencies
between the activities and the equilibrium concentrations returned by equilibrate().

4.11.3 The 'phreeqc' engine

The phreeqc engine uses phreeqpython for speciation, activity, and volume calculations. The PHREEQC engine
uses the phreeqc.dat PHREEQC database by default, although it is possible to instantiate the engine with other
databases such as llnl.dat, pitzer.dat, etc. See pyEQL.equilibrium.eqiulibrate_phreeqc in the module
reference for more details.

Activity and osmotic coefficients

Activity coefficients are calculated by dividing the PHREEQC activity by the molal concentration of the solute.

Due to limitations in the phreeqpython interface, the osmotic coefficient is always returned as 1 at present.

Warning: The phreeqc engine currently returns an osmotic coefficient of 1 and solute volume of 0 for all solu-
tions. There appear to be limitations in the phreeqpython interface that make it difficult to access these properties.

48 Chapter 4. Contents:

https://doi.org/10.1016/j.desal.2013.03.015
https://doi.org/10.1016/j.earscirev.2021.103888
https://github.com/Vitens/phreeqpython

pyEQL Documentation, Release v0.15.1

Solute volumes

Due to limitations in the phreeqpython interface, solute volumes are ignored (as in the ideal engine). More research
is needed to determine whether this is consistent with intended PHREEQC behavior (when using the default database)
or not.

Warning: The phreeqc engine currently returns an osmotic coefficient of 1 and solute volume of 0 for all solu-
tions. There appear to be limitations in the phreeqpython interface that make it difficult to access these properties.

Speciation

Speciation calculations are provided by PHREEQC via phreeqpython.

4.11.4 The 'ideal' engine

The 'ideal' engine applies ideal solution behavior. Activity and osmotic coefficients are always equal to 1, solute
volumes are always equal to zero, and there is no support for speciation.

4.11.5 Custom engines

The modeling engine system is designed to be extensible and customizable. To define a custom engine, you simply
need to inherit from pyEQL.engines.EOS (or a pre-existing engine class) and then populate the abstract methods
get_activity_coefficient), get_osmotic_coefficient, get_solute_volume, and equilibrate.

Equations that implement commonly used models or the above properties (such as the Debye-Huckel and Pitzer activity
models, among others) are available in pyEQL.activity_correction and pyEQL.equilibrium, respectively. The
idea is that end users can “compose” custom engine classes by mixing and matching the desired functions from these
modules, adding custom logic as necessary.

4.12 Property Database

pyEQL is distributed with a database of solute properties and model parameters needed to perform its calculations.
The database includes:

• Molecular weight, charge, and other chemical informatics information for any species

• Diffusion coefficients for 104 ions

• Pitzer model activity correction coefficients for 157 salts

• Pitzer model partial molar volume coefficients for 120 salts

• Jones-Dole “B” coefficients for 83 ions

• Hydrated and ionic radii for 23 ions

• Dielectric constant model parameters for 18 ions

• Partial molar volumes for 24 ions

pyEQL can automatically infer basic chemical informatics such as molecular weight and charge by passing a solute’s
formula to pymatgen.core.ion.Ion (See chemical formulas). For other physicochemical properties, it relies on data
compiled into the included database. A list of the data and species covered is available below

4.12. Property Database 49

pyEQL Documentation, Release v0.15.1

4.12.1 Format

The database is distributed as a .json file containing serialized Solute objects that define the schema for aggregated
property data (see below). By default, each instance of Solution loads this file as a maggma JSONStore and queries
data from it using the Store interface.

If desired, users can point a Solution instance to an alternate database by using the database keyword argument at
creation. The argument should contain either 1) the path to an alternate .json file (as a str) or 2) a maggma.Store
instance. The data in the file or Store must match the schema defined by Solute, with the field formula used as the
key field (unique identifier).

s1 = Solution(database='/path/to/my_database.json')

or

from maggma.core import JSONStore

db_store = JSONStore('/path/to/my_database.json', key='formula')
s1 = Solution(database=db_store)

4.12.2 The Solute class

pyEQL.Solute is a dataclass that defines a schema for organizing solute property data. You can think of the schema
as a structured dictionary: Solute defines the naming and organization of the keys. You can create a basic Solute
from just the solute’s formula as follows:

>>> from pyEQL.solute import Solute
>>> Solute.from_formula('Ti+2')
Solute(formula='Ti[+2]', charge=2, molecular_weight='47.867 g/mol', elements=['Ti'],␣
→˓chemsys='Ti', pmg_ion=Ion: Ti1 +2, formula_html='Ti⁺²', formula_latex='Ti$^
→˓{+2}$', formula_hill='Ti', formula_pretty='Ti^+2', oxi_state_guesses=({'Ti': 2.0},), n_
→˓atoms=1, n_elements=1, size={'radius_ionic': None, 'radius_hydrated': None, 'radius_vdw
→˓': None, 'molar_volume': None}, thermo={'G_hydration': None, 'G_formation': None},␣
→˓transport={'diffusion_coefficient': None}, model_parameters={'activity_pitzer': {'Beta0
→˓': None, 'Beta1': None, 'Beta2': None, 'Cphi': None, 'Max_C': None}, 'molar_volume_
→˓pitzer': {'Beta0': None, 'Beta1': None, 'Beta2': None, 'Cphi': None, 'V_o': None, 'Max_
→˓C': None}, 'viscosity_jones_dole': {'B': None}})

This method uses pymatgen to populate the Solute with basic chemical information like molecular weight. You can
access top-level keys in the schema via attribute, e.g.

>>> s.molecular_weight
'47.867 g/mol'
>>> s.charge
2.0

Other properties that are present in the schema, but not set, are None. For example, here we have not specified a
diffusion coefficient. If we inspect the transport attribute, we see

>>> s.transport
{'diffusion_coefficient': None}

You can convert a Solute into a regular dictionary using Solute.as_dict()

50 Chapter 4. Contents:

https://materialsproject.github.io/maggma/
https://materialsproject.github.io/maggma/reference/stores/#maggma.stores.mongolike.JSONStore
https://materialsproject.github.io/maggma/concepts/#store
https://docs.python.org/3/library/dataclasses.html

pyEQL Documentation, Release v0.15.1

>>> s.as_dict()
{'formula': 'Ti[+2]', 'charge': 2, 'molecular_weight': '47.867 g/mol', 'elements': ['Ti
→˓'], 'chemsys': 'Ti', 'pmg_ion': Ion: Ti1 +2, 'formula_html': 'Ti⁺²',
→˓'formula_latex': 'Ti$^{+2}$', 'formula_hill': 'Ti', 'formula_pretty': 'Ti^+2', 'oxi_
→˓state_guesses': ({'Ti': 2.0},), 'n_atoms': 1, 'n_elements': 1, 'size': {'radius_ionic':
→˓ None, 'radius_hydrated': None, 'radius_vdw': None, 'molar_volume': None}, 'thermo': {
→˓'G_hydration': None, 'G_formation': None}, 'transport': {'diffusion_coefficient': None}
→˓, 'model_parameters': {'activity_pitzer': {'Beta0': None, 'Beta1': None, 'Beta2': None,
→˓ 'Cphi': None, 'Max_C': None}, 'molar_volume_pitzer': {'Beta0': None, 'Beta1': None,
→˓'Beta2': None, 'Cphi': None, 'V_o': None, 'Max_C': None}, 'viscosity_jones_dole': {'B':
→˓ None}}}

4.12.3 Searching the database

Once you have a created a Solution, it will automatically search the database for needed parameters whenever it needs
to perform a calculation. For example, if you call get_transport_number, pyEQL will search the property database
for diffusion coefficient data to use in the calculation. No user action is needed.

If you want to search the database yourself, or to inspect the values that pyEQL uses for a particular parameter, you can
do so via the get_property method. First, create a Solution

>>> from pyEQL import Solution
>>> s1 = pyEQL.Solution

Next, call get_property with a solute name and the name of the property you need. Valid property names are any
key in the Solute schema. Nested keys can be separated by periods, e.g. “model_parameters.activity_pitzer”:

>>> s1.get_property('Mg+2', 'transport.diffusion_coefficient')
<Quantity(0.00705999997, 'centimeter ** 2 * liter * pascal * second / kilogram / meter␣
→˓** 2')>

If the property exists, it will be returned as a pint Quantity object, which you can convert to specific units if needed,
e.g.

>>> s1.get_property('Mg+2', 'transport.diffusion_coefficient').to('m**2/s')
<Quantity(7.05999997e-10, 'meter ** 2 / second')>

If the property does not exist in the database, None will be returned.

>>> s1.get_property('Mg+2', 'transport.randomproperty')
>>>

Although the database contains additional context about each and every property value, such as a citation, this infor-
mation is not currently exposed via the Solution interface. Richer methods for exploring and adding to the database
may be added in the future.

4.12. Property Database 51

https://pint.readthedocs.io/en/stable/

pyEQL Documentation, Release v0.15.1

4.12.4 Species included

The database currently contains one or more physichochemical properties for each of the solutes listed below. More
detailed information about which properties are available for which solutes may be added in the future.

- Ac[+3]
- Ag(CN)2[-1]
- AgNO3(aq)
- Ag[+1]
- Ag[+2]
- Ag[+3]
- Al2(SO4)3(aq)
- Al[+3]
- AsO4[-3]
- Au(CN)2[-1]
- Au(CN)4[-1]
- Au[+1]
- Au[+2]
- Au[+3]
- B(H5C6)4[-1]
- B(OH)3(aq)
- B(OH)4[-1]
- BF4[-1]
- BO2[-1]
- Ba(ClO4)2(aq)
- Ba(NO3)2(aq)
- BaBr2(aq)
- BaC4O.3H2O(aq)
- BaCl2(aq)
- BaI2(aq)
- Ba[+2]
- BeSO4(aq)
- Be[+2]
- Bi[+3]
- BrO3[-1]
- Br[-0.33333333]
- Br[-1]
- C2N3[-1]
- CH3COO[-1]
- CNO[-1]
- CN[-1]
- CO3[-2]
- CSN[-1]
- CSeN[-1]
- Ca(ClO4)2(aq)
- Ca(NO3)2(aq)
- CaBr2(aq)
- CaCl2(aq)
- CaI2(aq)
- Ca[+2]
- Cd(ClO4)2(aq)
- Cd(NO2)2(aq)
- Cd(NO3)2(aq)

(continues on next page)

52 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

- CdSO4(aq)
- Cd[+2]
- CeCl3(aq)
- Ce[+3]
- Ce[+4]
- ClO2[-1]
- ClO3[-1]
- ClO4[-1]
- Cl[-1]
- Co(CN)6[-3]
- Co(H3N)6[-3]
- Co(NO3)2(aq)
- CoBr2(aq)
- CoCl2(aq)
- CoI2(aq)
- Co[+2]
- Co[+3]
- Cr(NO3)3(aq)
- CrCl3(aq)
- CrO4[-2]
- Cr[+2]
- Cr[+3]
- Cs2SO4(aq)
- CsBr(aq)
- CsCl(aq)
- CsF(aq)
- CsHC2O.1H2O(aq)
- CsI(aq)
- CsNO2(aq)
- CsNO3(aq)
- CsOH(aq)
- Cs[+1]
- Cu(NO3)2(aq)
- CuCl2(aq)
- CuSO4(aq)
- Cu[+1]
- Cu[+2]
- Cu[+3]
- Dy[+2]
- Dy[+3]
- Er[+2]
- Er[+3]
- Eu(NO3)3(aq)
- EuCl3(aq)
- Eu[+2]
- Eu[+3]
- F[-1]
- Fe(CN)6[-3]
- Fe(CN)6[-4]
- FeCl2(aq)
- FeCl3(aq)
- Fe[+2]

(continues on next page)

4.12. Property Database 53

pyEQL Documentation, Release v0.15.1

(continued from previous page)

- Fe[+3]
- Ga[+3]
- GdCl3(aq)
- Gd[+3]
- Ge[+2]
- H2CO3(aq)
- H2O(aq)
- H2SNO3[-1]
- H2SO4(aq)
- H3O[+1]
- H4BrN(aq)
- H4IN(aq)
- H4N2O3(aq)
- H4NCl(aq)
- H4NClO4(aq)
- H4N[+1]
- H4SNO4(aq)
- H5C6O7[-3]
- H5N2[+1]
- H8S(NO2)2(aq)
- HBr(aq)
- HCO2[-1]
- HCO3[-1]
- HCl(aq)
- HClO4(aq)
- HF2[-1]
- HI(aq)
- HNO3(aq)
- HO2[-1]
- HOsO5[-1]
- HSO3[-1]
- HSO4[-1]
- HS[-1]
- HSeO3[-1]
- H[+1]
- Hf[+4]
- Hg[+2]
- Ho[+2]
- Ho[+3]
- IO3[-1]
- IO4[-1]
- I[-1]
- In[+1]
- In[+2]
- In[+3]
- IrO4[-1]
- Ir[+3]
- K2CO3(aq)
- K2PHO4(aq)
- K2SO4(aq)
- K3Fe(CN)6(aq)
- K3PO4(aq)

(continues on next page)

54 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

- K4Fe(CN)6(aq)
- KBr(aq)
- KBrO3(aq)
- KCSN(aq)
- KCl(aq)
- KClO3(aq)
- KClO4(aq)
- KCrO4(aq)
- KF(aq)
- KHC2O.1H2O(aq)
- KHCO3(aq)
- KI(aq)
- KNO2(aq)
- KNO3(aq)
- KOH(aq)
- KPO3.1H2O(aq)
- K[+1]
- La(NO3)3(aq)
- LaCl3(aq)
- La[+3]
- Li2SO4(aq)
- LiBr(aq)
- LiCl(aq)
- LiClO4(aq)
- LiHC2O.1H2O(aq)
- LiI(aq)
- LiNO2(aq)
- LiNO3(aq)
- LiOH(aq)
- Li[+1]
- Lu[+3]
- Mg(ClO4)2(aq)
- Mg(NO3)2(aq)
- MgBr2(aq)
- MgC4O.3H2O(aq)
- MgCl2(aq)
- MgI2(aq)
- MgSO4(aq)
- Mg[+2]
- MnCl2(aq)
- MnO4[-1]
- MnSO4(aq)
- Mn[+2]
- Mn[+3]
- MoO4[-2]
- Mo[+3]
- NO2[-1]
- NO3[-1]
- N[-0.33333333]
- Na2CO3(aq)
- Na2PHO4(aq)
- Na2S2O3(aq)

(continues on next page)

4.12. Property Database 55

pyEQL Documentation, Release v0.15.1

(continued from previous page)

- Na2SO4(aq)
- Na3PO4(aq)
- NaBr(aq)
- NaBrO3(aq)
- NaCSN(aq)
- NaCl(aq)
- NaClO4(aq)
- NaCrO4(aq)
- NaF(aq)
- NaHC2O.1H2O(aq)
- NaHC3.2H2O(aq)
- NaHCO2(aq)
- NaHCO3(aq)
- NaI(aq)
- NaNO2(aq)
- NaNO3(aq)
- NaOH(aq)
- NaPO3.1H2O(aq)
- Na[+1]
- Nb[+3]
- Nd(NO3)3(aq)
- NdCl3(aq)
- Nd[+2]
- Nd[+3]
- Ni(NO3)2(aq)
- NiCl2(aq)
- NiSO4(aq)
- Ni[+2]
- Ni[+3]
- Np[+3]
- Np[+4]
- OH[-1]
- Os[+3]
- P(HO2)2[-1]
- P(OH)2[-1]
- P2O7[-4]
- P3O10[-5]
- PF6[-1]
- PH9(NO2)2(aq)
- PHO4[-2]
- PO3F[-2]
- PO3[-1]
- PO4[-3]
- Pa[+3]
- Pb(ClO4)2(aq)
- Pb(NO3)2(aq)
- Pb[+2]
- Pd[+2]
- Pm[+2]
- Pm[+3]
- Po[+2]
- PrCl3(aq)

(continues on next page)

56 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

(continued from previous page)

- Pr[+2]
- Pr[+3]
- Pt[+2]
- Pu[+2]
- Pu[+4]
- Ra[+2]
- Rb2SO4(aq)
- RbBr(aq)
- RbCl(aq)
- RbF(aq)
- RbHC2O.1H2O(aq)
- RbI(aq)
- RbNO2(aq)
- RbNO3(aq)
- RbOH(aq)
- Rb[+1]
- ReO4[-1]
- Re[+1]
- Re[+3]
- Re[-1]
- Rh[+3]
- Ru[+2]
- Ru[+3]
- S2O3[-2]
- SO2[-1]
- SO3[-1]
- SO3[-2]
- SO4[-1]
- SO4[-2]
- S[-2]
- Sb(HO2)2[-1]
- Sb(OH)6[-1]
- ScCl3(aq)
- Sc[+2]
- Sc[+3]
- SeO3[-1]
- SeO4[-1]
- SeO4[-2]
- SiF6[-2]
- SmCl3(aq)
- Sm[+2]
- Sm[+3]
- Sn[+2]
- Sn[+4]
- Sr(ClO4)2(aq)
- Sr(NO3)2(aq)
- SrBr2(aq)
- SrCl2(aq)
- SrI2(aq)
- Sr[+2]
- Ta[+3]
- Tb[+3]

(continues on next page)

4.12. Property Database 57

pyEQL Documentation, Release v0.15.1

(continued from previous page)

- TcO4[-1]
- Tc[+2]
- Tc[+3]
- Th(NO3)4(aq)
- Th[+4]
- Ti[+2]
- Ti[+3]
- Tl(ClO4)3(aq)
- Tl(NO2)3(aq)
- Tl(NO3)3(aq)
- TlH(C3O)2.4H2O(aq)
- Tl[+1]
- Tl[+3]
- Tm[+2]
- Tm[+3]
- U(ClO)2(aq)
- U(ClO5)2(aq)
- U(NO4)2(aq)
- UO2[+1]
- UO2[+2]
- USO6(aq)
- U[+3]
- U[+4]
- VO2[+1]
- V[+2]
- V[+3]
- WO4[-1]
- WO4[-2]
- W[+3]
- YCl3(aq)
- YNO3(aq)
- Y[+3]
- Yb[+2]
- Yb[+3]
- Zn(ClO4)2(aq)
- Zn(NO3)2(aq)
- ZnBr2(aq)
- ZnCl2(aq)
- ZnI2(aq)
- ZnSO4(aq)
- Zn[+2]
- Zr[+4]

58 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

4.13 Mixing Functions

pyEQL contains several mixing and equilibration functions that take Solution as arguments. pyEQL functions that
take Solution objects as inputs or return Solution objects.

copyright
2013-2024 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

pyEQL.functions.gibbs_mix(solution1: Solution, solution2: Solution)
Return the Gibbs energy change associated with mixing two solutions.

Parameters
• solution1 – a solution to be mixed.

• solution2 – a solution to be mixed.

Returns
The change in Gibbs energy associated with complete mixing of the Solutions, in Joules.

Notes

The Gibbs energy of mixing is calculated as follows

∆𝑚𝑖𝑥𝐺 =
∑︁
𝑖

(𝑛𝑐 + 𝑛𝑑)𝑅𝑇 ln 𝑎𝑏 −
∑︁
𝑖

𝑛𝑐𝑅𝑇 ln 𝑎𝑐 −
∑︁
𝑖

𝑛𝑑𝑅𝑇 ln 𝑎𝑑

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, and subscripts 𝑏, 𝑐, and 𝑑 refer to
the concentrated, dilute, and blended Solutions, respectively.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a three
component solution (cation, anion, and water).

References

Koga, Yoshikata, 2007. Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach. Elsevier, 2007, pp. 23-37.

pyEQL.functions.entropy_mix(solution1: Solution, solution2: Solution)
Return the ideal mixing entropy associated with mixing two solutions.

Parameters
• solution1 – The two solutions to be mixed.

• solution2 – The two solutions to be mixed.

Returns
The ideal mixing entropy associated with complete mixing of the Solutions, in Joules.

4.13. Mixing Functions 59

pyEQL Documentation, Release v0.15.1

Notes

The ideal entropy of mixing is calculated as follows

∆𝑚𝑖𝑥𝑆 =
∑︁
𝑖

(𝑛𝑐 + 𝑛𝑑)𝑅𝑇 ln𝑥𝑏 −
∑︁
𝑖

𝑛𝑐𝑅𝑇 ln𝑥𝑐 −
∑︁
𝑖

𝑛𝑑𝑅𝑇 ln𝑥𝑑

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, and subscripts 𝑏, 𝑐, and 𝑑 refer to
the concentrated, dilute, and blended Solutions, respectively.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a three
component solution (cation, anion, and water).

References

Koga, Yoshikata, 2007. *Solution Thermodynamics and its Application to Aqueous Solutions:
A differential approach.* Elsevier, 2007, pp. 23-37.

pyEQL.functions.donnan_eql(solution: Solution, fixed_charge: str)
Return a solution object in equilibrium with fixed_charge.

Parameters
• solution – Solution object The external solution to be brought into equilibrium with the

fixed charges

• fixed_charge – str quantity String representing the concentration of fixed charges, includ-
ing sign. May be specified in mol/L or mol/kg units. e.g. ‘1 mol/kg’

Returns
A Solution that has established Donnan equilibrium with the external (input) Solution

Notes

The general equation representing the equilibrium between an external electrolyte solution and an ion-exchange
medium containing fixed charges is

In addition, electroneutrality must prevail within the membrane phase:

𝐶+𝑧+ + �̄� + 𝐶−𝑧− = 0

Where 𝐶 represents concentration and 𝑋 is the fixed charge concentration in the membrane or ion exchange phase.

This function solves these two equations simultaneously to arrive at the concentrations of the cation and anion in the
membrane phase. It returns a solution equal to the input solution except that the concentrations of the predominant
cation and anion have been adjusted according to this equilibrium.

NOTE that this treatment is only capable of equilibrating a single salt. This salt is identified by the get_salt() method.

60 Chapter 4. Contents:

https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

References

Strathmann, Heiner, ed. Membrane Science and Technology vol. 9, 2004. Chapter 2, p. 51.
http://dx.doi.org/10.1016/S0927-5193(04)80033-0

See also:
get_salt()

4.14 Solution Class Reference

This page contains detailed information on each of the methods, attributes, and properties in Solution. Use the sidebar
on the right for easier navigation.

4.14.1 Solution

class pyEQL.Solution(solutes: list[list[str]] | dict[str, str] | None = None, volume: str | None = None,
temperature: str = '298.15 K', pressure: str = '1 atm', pH: float = 7, pE: float = 8.5,
balance_charge: str | None = None, solvent: str | list = 'H2O', engine: EOS |
Literal['native', 'ideal', 'phreeqc'] = 'native', database: str | Path | Store | None = None,
default_diffusion_coeff: float = 1.6106e-09)

Class representing the properties of a solution. Instances of this class contain information about the solutes,
solvent, and bulk properties.

__init__(solutes: list[list[str]] | dict[str, str] | None = None, volume: str | None = None, temperature: str =
'298.15 K', pressure: str = '1 atm', pH: float = 7, pE: float = 8.5, balance_charge: str | None =
None, solvent: str | list = 'H2O', engine: EOS | Literal['native', 'ideal', 'phreeqc'] = 'native',
database: str | Path | Store | None = None, default_diffusion_coeff: float = 1.6106e-09)

Instantiate a Solution from a composition.

Parameters
• solutes – dict, optional. Keys must be the chemical formula, while values must be str

Quantity representing the amount. For example:

{“Na+”: “0.1 mol/L”, “Cl-”: “0.1 mol/L”}

Note that an older “list of lists” syntax is also supported; however this will be deprecated in
the future and is no longer recommended. The equivalent list syntax for the above example
is

[[“Na+”, “0.1 mol/L”], [“Cl-”, “0.1 mol/L”]]

Defaults to empty (pure solvent) if omitted

• volume – str, optional Volume of the solvent, including the unit. Defaults to ‘1 L’ if omitted.
Note that the total solution volume will be computed using partial molar volumes of the
respective solutes as they are added to the solution.

• temperature – str, optional The solution temperature, including the ureg. Defaults to ‘25
degC’ if omitted.

• pressure – Quantity, optional The ambient pressure of the solution, including the unit.
Defaults to ‘1 atm’ if omitted.

• pH – number, optional Negative log of H+ activity. If omitted, the solution will be initialized
to pH 7 (neutral) with appropriate quantities of H+ and OH- ions

4.14. Solution Class Reference 61

http://dx.doi.org/10.1016/S0927-5193(04)80033-0
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

• pE – the pE value (redox potential) of the solution. Lower values = more reducing, higher
values = more oxidizing. At pH 7, water is stable between approximately -7 to +14. The
default value corresponds to a pE value typical of natural waters in equilibrium with the
atmosphere.

• balance_charge – The strategy for balancing charge during init and equilibrium cal-
culations. Valid options are ‘pH’, which will adjust the solution pH to balance charge,
‘pE’ which will adjust the redox equilibrium to balance charge, or the name of a dissolved
species e.g. ‘Ca+2’ or ‘Cl-’ that will be added/subtracted to balance charge. If set to None,
no charge balancing will be performed either on init or when equilibrate() is called. Note
that in this case, equilibrate() can distort the charge balance!

• solvent – Formula of the solvent. Solvents other than water are not supported at this time.

• engine – Electrolyte modeling engine to use. See documentation for details on the avail-
able engines.

• database – path to a .json file (str or Path) or maggma Store instance that contains serial-
ized SoluteDocs. None (default) will use the built-in pyEQL database.

• default_diffusion_coeff – Diffusion coefficient value in m^2/s to use in calculations
when there is no diffusion coefficient for a species in the database. This affects several
important property calculations including conductivity and transport number, which are
related to the weighted sums of diffusion coefficients of all species. Setting this argument to
zero will exclude any species that does not have a tabulated diffusion coefficient from these
calculations, possibly resulting in underestimation of the conductivity and/or inaccurate
transport numbers.

Missing diffusion coefficients are especially likely in complex electrolytes containing, for
example, complexes or paired species such as NaSO4[-1]. In such cases, setting de-
fault_diffusion_coeff to zero is likely to result in the above errors.

By default, this argument is set to the diffusion coefficient of NaCl salt, 1.61x10^-9 m2/s.

Examples

>>> s1 = pyEQL.Solution({'Na+': '1 mol/L','Cl-': '1 mol/L'},temperature='20 degC
→˓',volume='500 mL')
>>> print(s1)
Components:
Volume: 0.500 l
Pressure: 1.000 atm
Temperature: 293.150 K
Components: ['H2O(aq)', 'H[+1]', 'OH[-1]', 'Na[+1]', 'Cl[-1]']

balance_charge

Standardized formula of the species used for charge balancing.

water_substance

IAPWS instance describing water properties.

components

Special dictionary where keys are standardized formula and values are the moles present in Solution.

database

Store instance containing the solute property database.

62 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

solvent

Formula of the component that is set as the solvent (currently only H2O(aq) is supported).

property mass: Quantity

Return the total mass of the solution.

The mass is calculated each time this method is called.

Returns: The mass of the solution, in kg

property solvent_mass: Quantity

Return the mass of the solvent.

This property is used whenever mol/kg (or similar) concentrations are requested by get_amount()

Returns
The mass of the solvent, in kg

See also:
get_amount()

property volume: Quantity

Return the volume of the solution.

Returns
the volume of the solution, in L

Return type
Quantity

property temperature: Quantity

Return the temperature of the solution in Kelvin.

property pressure: Quantity

Return the hydrostatic pressure of the solution in atm.

property pH: float | None

Return the pH of the solution.

p(solute: str, activity=True)→ float | None
Return the negative log of the activity of solute.

Generally used for expressing concentration of hydrogen ions (pH)

Parameters
• solute – str String representing the formula of the solute

• activity – bool, optional If False, the function will use the molar concentration rather
than the activity to calculate p. Defaults to True.

Returns
Quantity

The negative log10 of the activity (or molar concentration if activity = False) of the solute.

property density: Quantity

Return the density of the solution.

Density is calculated from the mass and volume each time this method is called.

Returns
The density of the solution.

4.14. Solution Class Reference 63

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/constants.html#None

pyEQL Documentation, Release v0.15.1

Return type
Quantity

property dielectric_constant: Quantity

Returns the dielectric constant of the solution.

Parameters
None –

Returns
the dielectric constant of the solution, dimensionless.

Return type
Quantity

Notes

Implements the following equation as given by Zuber et al.

𝜖 = 𝜖𝑠𝑜𝑙𝑣𝑒𝑛𝑡
1 +

∑︀
𝑖 𝛼𝑖𝑥𝑖

where 𝛼𝑖 is a coefficient specific to the solvent and ion, and 𝑥𝑖 is the mole fraction of the ion in solution.

References

A. Zuber, L. Cardozo-Filho, V.F. Cabral, R.F. Checoni, M. Castier, An empirical equation for the dielec-
tric constant in aqueous and nonaqueous electrolyte mixtures, Fluid Phase Equilib. 376 (2014) 116-123.
doi:10.1016/j.fluid.2014.05.037.

property chemical_system: str

Return the chemical system of the Solution as a “-” separated list of elements, sorted alphabetically. For
example, a solution containing CaCO3 would have a chemical system of “C-Ca-H-O”.

property elements: list

Return a list of elements that are present in the solution.

For example, a solution containing CaCO3 would return [“C”, “Ca”, “H”, “O”]

property cations: dict[str, float]

Returns the subset of components that are cations.

The returned dict is sorted by amount in descending order.

property anions: dict[str, float]

Returns the subset of components that are anions.

The returned dict is sorted by amount in descending order.

property neutrals: dict[str, float]

Returns the subset of components that are neutral (not charged).

The returned dict is sorted by amount in descending order.

property viscosity_dynamic: Quantity

Return the dynamic (absolute) viscosity of the solution.

Calculated from the kinematic viscosity

64 Chapter 4. Contents:

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

See also:
viscosity_kinematic

property viscosity_kinematic: Quantity

Return the kinematic viscosity of the solution.

Notes

The calculation is based on a model derived from the Eyring equation and presented in

ln 𝜈 = ln
𝜈𝑤𝑀𝑊𝑤∑︀
𝑖 𝑥𝑖𝑀𝑊𝑖

+ 15𝑥2
+ + 𝑥3

+𝛿𝐺
*
123 + 3𝑥+𝛿𝐺

*
23(1− 0.05𝑥+)

Where:

𝛿𝐺*
123 = 𝑎𝑜 + 𝑎1(𝑇)

0.75

𝛿𝐺*
23 = 𝑏𝑜 + 𝑏1(𝑇)

0.5

In which 𝜈 is the kinematic viscosity, MW is the molecular weight, 𝑥+ is the mole fraction of cations, and
𝑇 is the temperature in degrees C.

The a and b fitting parameters for a variety of common salts are included in the database.

References

Vásquez-Castillo, G.; Iglesias-Silva, G. a.; Hall, K. R. An extension of the McAllister model to correlate
kinematic viscosity of electrolyte solutions. Fluid Phase Equilib. 2013, 358, 44-49.

See also:
viscosity_dynamic()

property conductivity: Quantity

Compute the electrical conductivity of the solution.

Returns
The electrical conductivity of the solution in Siemens / meter.

Notes

Conductivity is calculated by summing the molar conductivities of the respective solutes.

𝐸𝐶 =
𝐹 2

𝑅𝑇

∑︁
𝑖

𝐷𝑖𝑧
2
𝑖𝑚𝑖 =

∑︁
𝑖

𝜆𝑖𝑚𝑖

Where 𝐷𝑖 is the diffusion coefficient, 𝑚𝑖 is the molal concentration, 𝑧𝑖 is the charge, and the summation
extends over all species in the solution. Alternatively, 𝜆𝑖 is the molar conductivity of solute i.

Diffusion coefficients 𝐷𝑖 (and molar conductivities 𝜆𝑖) are adjusted for the effects of temperature and ionic
strength using the method implemented in PHREEQC >= 3.4. [?] [?] See get_diffusion_coefficient for
further details.

4.14. Solution Class Reference 65

pyEQL Documentation, Release v0.15.1

References

See also:
ionic_strength get_diffusion_coefficient() get_molar_conductivity()

property ionic_strength: Quantity

Return the ionic strength of the solution.

Return the ionic strength of the solution, calculated as 1/2 * sum (molality * charge ^2) over all the ions.

Molal (mol/kg) scale concentrations are used for compatibility with the activity correction formulas.

Returns
The ionic strength of the parent solution, mol/kg.

Return type
Quantity

See also:
get_activity() get_water_activity()

Notes

The ionic strength is calculated according to:

𝐼 =
∑︁
𝑖

𝑚𝑖𝑧
2
𝑖

Where 𝑚𝑖 is the molal concentration and 𝑧𝑖 is the charge on species i.

Examples

>>> s1 = pyEQL.Solution([['Na+','0.2 mol/kg'],['Cl-','0.2 mol/kg']])
>>> s1.ionic_strength
<Quantity(0.20000010029672785, 'mole / kilogram')>

>>> s1 = pyEQL.Solution([['Mg+2','0.3 mol/kg'],['Na+','0.1 mol/kg'],['Cl-','0.7␣
→˓mol/kg']],temperature='30 degC')
>>> s1.ionic_strength
<Quantity(1.0000001004383303, 'mole / kilogram')>

property charge_balance: float

Return the charge balance of the solution.

Return the charge balance of the solution. The charge balance represents the net electric charge on the
solution and SHOULD equal zero at all times, but due to numerical errors will usually have a small nonzero
value. It is calculated according to:

𝐶𝐵 =
∑︁
𝑖

𝐶𝑖𝑧𝑖

where 𝐶𝑖 is the molar concentration, and 𝑧𝑖 is the charge on species i.

Returns
The charge balance of the solution, in equivalents (mol of charge) per L.

66 Chapter 4. Contents:

https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

Return type
float

property alkalinity: Quantity

Return the alkalinity or acid neutralizing capacity of a solution.

Returns
The alkalinity of the solution in mg/L as CaCO3

Return type
Quantity

Notes

The alkalinity is calculated according to [?]

𝐴𝑙𝑘 =
∑︁
𝑖

𝑧𝑖𝐶𝐵 +
∑︁
𝑖

𝑧𝑖𝐶𝐴

Where 𝐶𝐵 and 𝐶𝐴 are conservative cations and anions, respectively (i.e. ions that do not participate in
acid-base reactions), and 𝑧𝑖 is their signed charge. In this method, the set of conservative cations is all
Group I and Group II cations, and the conservative anions are all the anions of strong acids.

References

property hardness: Quantity

Return the hardness of a solution.

Hardness is defined as the sum of the equivalent concentrations of multivalent cations as calcium carbonate.

NOTE: at present pyEQL cannot distinguish between mg/L as CaCO3 and mg/L units. Use with caution.

Returns
The hardness of the solution in mg/L as CaCO3

Return type
Quantity

property total_dissolved_solids: Quantity

Total dissolved solids in mg/L (equivalent to ppm) including both charged and uncharged species.

The TDS is defined as the sum of the concentrations of all aqueous solutes (not including the solvent),
except for H[+1] and OH[-1]].

property TDS: Quantity

Alias of total_dissolved_solids().

property debye_length: Quantity

Return the Debye length of a solution.

Debye length is calculated as [?]

𝜅−1 =
√︀

(
𝜖𝑟𝜖𝑜𝑘𝐵𝑇

(2𝑁𝐴𝑒2𝐼)
)

where 𝐼 is the ionic strength, 𝜖𝑟 and 𝜖𝑟 are the relative permittivity and vacuum permittivity, 𝑘𝐵 is the
Boltzmann constant, and 𝑇 is the temperature, 𝑒 is the elementary charge, and 𝑁𝐴 is Avogadro’s number.

Returns The Debye length, in nanometers.

4.14. Solution Class Reference 67

https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

References

See also:
ionic_strength dielectric_constant

property bjerrum_length: Quantity

Return the Bjerrum length of a solution.

Bjerrum length represents the distance at which electrostatic interactions between particles become com-
parable in magnitude to the thermal energy.:math:lambda_B is calculated as

𝜆𝐵 =
𝑒2

(4𝜋𝜖𝑟𝜖𝑜𝑘𝐵𝑇)

where 𝑒 is the fundamental charge, 𝜖𝑟 and 𝜖𝑟 are the relative permittivity and vacuum permittivity, 𝑘𝐵 is
the Boltzmann constant, and 𝑇 is the temperature.

Returns
The Bjerrum length, in nanometers.

Return type
Quantity

References

https://en.wikipedia.org/wiki/Bjerrum_length

Examples

>>> s1 = pyEQL.Solution()
>>> s1.bjerrum_length
<Quantity(0.7152793009386953, 'nanometer')>

See also:
dielectric_constant

property osmotic_pressure: Quantity

Return the osmotic pressure of the solution relative to pure water.

Returns
The osmotic pressure of the solution relative to pure water in Pa

See also:
get_water_activity get_osmotic_coefficient get_salt

68 Chapter 4. Contents:

https://en.wikipedia.org/wiki/Bjerrum_length

pyEQL Documentation, Release v0.15.1

Notes

Osmotic pressure is calculated based on the water activity [?] [?]

Π = −𝑅𝑇

𝑉𝑤
ln 𝑎𝑤

Where Π is the osmotic pressure, 𝑉𝑤 is the partial molar volume of water (18.2 cm**3/mol), and 𝑎𝑤 is the
water activity.

References

Examples

>>> s1=pyEQL.Solution()
>>> s1.osmotic_pressure
<Quantity(0.495791416, 'pascal')>

>>> s1 = pyEQL.Solution([['Na+','0.2 mol/kg'],['Cl-','0.2 mol/kg']])
>>> soln.osmotic_pressure
<Quantity(906516.7318131207, 'pascal')>

get_amount(solute: str, units: str = 'mol/L')→ Quantity
Return the amount of ‘solute’ in the parent solution.

The amount of a solute can be given in a variety of unit types. 1. substance per volume (e.g., ‘mol/L’, ‘M’) 2.
equivalents (i.e., moles of charge) per volume (e.g., ‘eq/L’, ‘meq/L’) 3. substance per mass of solvent (e.g.,
‘mol/kg’, ‘m’) 4. mass of substance (e.g., ‘kg’) 5. moles of substance (‘mol’) 6. mole fraction (‘fraction’)
7. percent by weight (%) 8. number of molecules (‘count’) 9. “parts-per-x” units, where ppm = mg/L, ppb
= ug/L ppt = ng/L

Parameters
• solute – str String representing the name of the solute of interest

• units – str Units desired for the output. Examples of valid units are ‘mol/L’,’mol/kg’,’mol’,
‘kg’, and ‘g/L’ Use ‘fraction’ to return the mole fraction. Use ‘%’ to return the mass percent

Returns
The amount of the solute in question, in the specified units

See also:
mass add_amount() set_amount() get_total_amount() get_osmolarity() get_osmolality()
get_total_moles_solute() pyEQL.utils.interpret_units()

get_components_by_element()→ dict[str, list]
Return a list of all species associated with a given element.

Elements (keys) are suffixed with their oxidation state in parentheses, e.g.,

{“Na(1.0)”:[“Na[+1]”, “NaOH(aq)”]}

Species associated with each element are sorted in descending order of the amount present (i.e., the first
species listed is the most abundant).

4.14. Solution Class Reference 69

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#list

pyEQL Documentation, Release v0.15.1

get_el_amt_dict()

Return a dict of Element: amount in mol.

Elements (keys) are suffixed with their oxidation state in parentheses, e.g. “Fe(2.0)”, “Cl(-1.0)”.

get_total_amount(element: str, units: str)→ Quantity
Return the total amount of ‘element’ (across all solutes) in the solution.

Parameters
• element – The symbol of the element of interest. The symbol can optionally be followed

by the oxidation state in parentheses, e.g., “Na(1.0)”, “Fe(2.0)”, or “O(0.0)”. If no oxidation
state is given, the total concentration of the element (over all oxidation states) is returned.

• units – str Units desired for the output. Any unit understood by get_amount can be used.
Examples of valid units are ‘mol/L’,’mol/kg’,’mol’, ‘kg’, and ‘g/L’.

Returns
The total amount of the element in the solution, in the specified units

See also:
get_amount() pyEQL.utils.interpret_units()

add_solute(formula: str, amount: str)
Primary method for adding substances to a pyEQL solution.

Parameters
• formula (str) – Chemical formula for the solute. Charged species must contain a + or -

and

• charge ((for polyvalent solutes) a number representing the net) –

• amount (str) – The amount of substance in the specified unit system. The string should
contain

• g/L'. (both a quantity and a pint-compatible representation of a
ureg. e.g. '5 mol/kg' or '0.1) –

add_solvent(formula: str, amount: str)
Same as add_solute but omits the need to pass solvent mass to pint.

add_amount(solute: str, amount: str)
Add the amount of ‘solute’ to the parent solution.

Parameters
• solute – str String representing the name of the solute of interest

• amount – str quantity String representing the concentration desired, e.g. ‘1 mol/kg’ If the
units are given on a per-volume basis, the solution volume is not recalculated If the units
are given on a mass, substance, per-mass, or per-substance basis, then the solution volume
is recalculated based on the new composition

Returns
Nothing. The concentration of solute is modified.

set_amount(solute: str, amount: str)
Set the amount of ‘solute’ in the parent solution.

Parameters
• solute – str String representing the name of the solute of interest

70 Chapter 4. Contents:

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

• amount – str Quantity String representing the concentration desired, e.g. ‘1 mol/kg’ If
the units are given on a per-volume basis, the solution volume is not recalculated and the
molar concentrations of other components in the solution are not altered, while the molal
concentrations are modified.

If the units are given on a mass, substance, per-mass, or per-substance basis, then the solu-
tion volume is recalculated based on the new composition and the molal concentrations of
other components are not altered, while the molar concentrations are modified.

Returns
Nothing. The concentration of solute is modified.

get_total_moles_solute()→ Quantity
Return the total moles of all solute in the solution.

get_moles_solvent()→ Quantity
Return the moles of solvent present in the solution.

Returns
The moles of solvent in the solution.

get_osmolarity(activity_correction=False)→ Quantity
Return the osmolarity of the solution in Osm/L.

Parameters
activity_correction – bool If TRUE, the osmotic coefficient is used to calculate the
osmolarity. This correction is appropriate when trying to predict the osmolarity that would
be measured from e.g. freezing point depression. Defaults to FALSE if omitted.

get_osmolality(activity_correction=False)→ Quantity
Return the osmolality of the solution in Osm/kg.

Parameters
activity_correction – bool If TRUE, the osmotic coefficient is used to calculate the
osmolarity. This correction is appropriate when trying to predict the osmolarity that would
be measured from e.g. freezing point depression. Defaults to FALSE if omitted.

get_salt()→ Salt
Determine the predominant salt in a solution of ions.

Many empirical equations for solution properties such as activity coefficient, partial molar volume, or vis-
cosity are based on the concentration of single salts (e.g., NaCl). When multiple ions are present (e.g., a
solution containing Na+, Cl-, and Mg+2), it is generally not possible to directly model these quantities.
pyEQL works around this problem by treating such solutions as single salt solutions.

The get_salt() method examines the ionic composition of a solution and returns an object that identifies the
single most predominant salt in the solution, defined by the cation and anion with the highest mole fraction.
The Salt object contains information about the stoichiometry of the salt to enable its effective concentration
to be calculated (e.g., if a solution contains 0.5 mol/kg of Na+ and Cl-, plus traces of H+ and OH-, the
matched salt is 0.5 mol/kg NaCl).

Returns
Salt object containing information about the parent salt.

See also:
get_activity() get_activity_coefficient() get_water_activity()
get_osmotic_coefficient() osmotic_pressure viscosity_kinematic

4.14. Solution Class Reference 71

pyEQL Documentation, Release v0.15.1

Examples

>>> s1 = Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']])
>>> s1.get_salt()
<pyEQL.salt_ion_match.Salt object at 0x7fe6d3542048>
>>> s1.get_salt().formula
'NaCl'
>>> s1.get_salt().nu_cation
1
>>> s1.get_salt().z_anion
-1

>>> s2 = pyEQL.Solution([['Na+','0.1 mol/kg'],['Mg+2','0.2 mol/kg'],['Cl-','0.5␣
→˓mol/kg']])
>>> s2.get_salt().formula
'MgCl2'
>>> s2.get_salt().nu_anion
2
>>> s2.get_salt().z_cation
2

get_salt_dict(cutoff: float = 0.01, use_totals: bool = True)→ dict[str, dict]
Returns a dict of salts that approximates the composition of the Solution. Like components, the dict is
keyed by formula and the values are the total moles present in the solution, e.g., {“NaCl(aq)”: 1}. If the
Solution is pure water, the returned dict contains only ‘HOH’.

Parameters
• cutoff – Lowest salt concentration to consider. Analysis will stop once the concentrations

of Salts being analyzed goes below this value. Useful for excluding analysis of trace anions.

• use_totals – Whether to base the analysis on total element concentrations or individual
species concentrations.

Notes

Salts are identified by pairing the predominant cations and anions in the solution, in descending order of
their respective equivalent amounts.

Many empirical equations for solution properties such as activity coefficient, partial molar volume, or vis-
cosity are based on the concentration of single salts (e.g., NaCl). When multiple ions are present (e.g., a
solution containing Na+, Cl-, and Mg+2), it is generally not possible to directly model these quantities.

The get_salt_dict() method examines the ionic composition of a solution and simplifies it into a list of salts.
The method returns a dictionary of Salt objects where the keys are the salt formulas (e.g., ‘NaCl’). The
Salt object contains information about the stoichiometry of the salt to enable its effective concentration to
be calculated (e.g., 1 M MgCl2 yields 1 M Mg+2 and 2 M Cl-).

Returns
dict

A dictionary of Salt objects, keyed to the salt formula

See also:
osmotic_pressure viscosity_kinematic get_activity() get_activity_coefficient()
get_water_activity() get_osmotic_coefficient()

72 Chapter 4. Contents:

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#bool
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict

pyEQL Documentation, Release v0.15.1

equilibrate(**kwargs)→ None
Update the composition of the Solution using the thermodynamic engine.

Any kwargs specified are passed through to self.engine.equilibrate()

Returns
Nothing. The .components attribute of the Solution is updated.

get_activity_coefficient(solute: str, scale: Literal['molal', 'molar', 'fugacity', 'rational'] = 'molal')→
Quantity

Return the activity coefficient of a solute in solution.

The model used to calculate the activity coefficient is determined by the Solution’s equation of state engine.

Parameters
• solute – The solute for which to retrieve the activity coefficient

• scale – The activity coefficient concentration scale

• verbose – If True, pyEQL will print a message indicating the parent salt that is being used
for activity calculations. This option is useful when modeling multicomponent solutions.
False by default.

Returns
the activity coefficient as a dimensionless pint Quantity

Return type
Quantity

get_activity(solute: str, scale: Literal['molal', 'molar', 'rational'] = 'molal')→ Quantity
Return the thermodynamic activity of the solute in solution on the chosen concentration scale.

Parameters
• solute – String representing the name of the solute of interest

• scale – The concentration scale for the returned activity. Valid options are “molal”, “mo-
lar”, and “rational” (i.e., mole fraction). By default, the molal scale activity is returned.

• verbose – If True, pyEQL will print a message indicating the parent salt that is being used
for activity calculations. This option is useful when modeling multicomponent solutions.
False by default.

Returns
The thermodynamic activity of the solute in question (dimensionless Quantity)

Notes

The thermodynamic activity depends on the concentration scale used [?] . By default, the ionic strength,
activity coefficients, and activities are all calculated based on the molal (mol/kg) concentration scale.

4.14. Solution Class Reference 73

https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Literal

pyEQL Documentation, Release v0.15.1

References

See also:
ionic_strength get_activity_coefficient() get_salt()

get_osmotic_coefficient(scale: Literal['molal', 'molar', 'rational'] = 'molal')→ Quantity
Return the osmotic coefficient of an aqueous solution.

The method used depends on the Solution object’s equation of state engine.

get_water_activity()→ Quantity
Return the water activity.

Returns
The thermodynamic activity of water in the solution.

Return type
Quantity

See also:
ionic_strength get_activity_coefficient() get_salt()

Notes

Water activity is related to the osmotic coefficient in a solution containing i solutes by:

ln 𝑎𝑤 = −Φ𝑀𝑤

∑︁
𝑖

𝑚𝑖

Where𝑀𝑤 is the molar mass of water (0.018015 kg/mol) and𝑚𝑖 is the molal concentration of each species.

If appropriate Pitzer model parameters are not available, the water activity is assumed equal to the mole
fraction of water.

References

Blandamer, Mike J., Engberts, Jan B. F. N., Gleeson, Peter T., Reis, Joao Carlos R., 2005. “Activity of
water in aqueous systems: A frequently neglected property.” Chemical Society Review 34, 440-458.

Examples

>>> s1 = pyEQL.Solution([['Na+','0.3 mol/kg'],['Cl-','0.3 mol/kg']])
>>> s1.get_water_activity()
<Quantity(0.9900944932888518, 'dimensionless')>

get_chemical_potential_energy(activity_correction: bool = True)→ Quantity
Return the total chemical potential energy of a solution (not including pressure or electric effects).

Parameters
activity_correction – bool, optional If True, activities will be used to calculate the true
chemical potential. If False, mole fraction will be used, resulting in a calculation of the ideal
chemical potential.

Returns

74 Chapter 4. Contents:

https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/functions.html#bool

pyEQL Documentation, Release v0.15.1

Quantity
The actual or ideal chemical potential energy of the solution, in Joules.

Notes

The chemical potential energy (related to the Gibbs mixing energy) is calculated as follows: [?]

𝐸 = 𝑅𝑇
∑︁
𝑖

𝑛𝑖 ln 𝑎𝑖

or

𝐸 = 𝑅𝑇
∑︁
𝑖

𝑛𝑖 ln𝑥𝑖

Where 𝑛 is the number of moles of substance, 𝑇 is the temperature in kelvin, 𝑅 the ideal gas constant, 𝑥
the mole fraction, and 𝑎 the activity of each component.

Note that dissociated ions must be counted as separate components, so a simple salt dissolved in water is a
three component solution (cation, anion, and water).

References

A differential approach.* Elsevier, 2007, pp. 23-37.

_get_property(solute: str, name: str)→ Any | None
Retrieve a thermodynamic property (such as diffusion coefficient) for solute, and adjust it from the reference
conditions to the conditions of the solution.

Parameters
• solute – str String representing the chemical formula of the solute species

• name – str The name of the property needed, e.g. ‘diffusion coefficient’

Returns
The desired parameter or None if not found

Return type
Quantity

get_transport_number(solute: str)→ Quantity
Calculate the transport number of the solute in the solution.

Parameters
solute – Formula of the solute for which the transport number is to be calculated.

Returns
The transport number of solute, as a dimensionless Quantity.

4.14. Solution Class Reference 75

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Any
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

Notes

Transport number is calculated according to :

𝑡𝑖 =
𝐷𝑖𝑧

2
𝑖𝐶𝑖∑︀

𝐷𝑖𝑧2𝑖𝐶𝑖

Where 𝐶𝑖 is the concentration in mol/L, 𝐷𝑖 is the diffusion coefficient, and 𝑧𝑖 is the charge, and
the summation extends over all species in the solution.

Diffusion coefficients 𝐷𝑖 are adjusted for the effects of temperature and ionic strength using the
method implemented in PHREEQC >= 3.4. See get_diffusion_coefficient for further details.

References

Geise, G. M.; Cassady, H. J.; Paul, D. R.; Logan, E.; Hickner, M. A. “Specific ion effects on membrane
potential and the permselectivity of ion exchange membranes.”” Phys. Chem. Chem. Phys. 2014, 16,
21673-21681.

See also:
get_diffusion_coefficient() get_molar_conductivity()

get_lattice_distance(solute: str)→ Quantity
Calculate the average distance between molecules.

Calculate the average distance between molecules of the given solute, assuming that the molecules are
uniformly distributed throughout the solution.

Parameters
solute – str String representing the name of the solute of interest

Returns
The average distance between solute molecules

Return type
Quantity

Examples

>>> soln = Solution([['Na+','0.5 mol/kg'],['Cl-','0.5 mol/kg']])
>>> soln.get_lattice_distance('Na+')
1.492964.... nanometer

Notes

The lattice distance is related to the molar concentration as follows:

𝑑 = (𝐶𝑖𝑁𝐴)
− 1

3

as_dict()→ dict
Convert the Solution into a dict representation that can be serialized to .json or other format.

76 Chapter 4. Contents:

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#dict

pyEQL Documentation, Release v0.15.1

classmethod from_dict(d: dict)→ Solution
Instantiate a Solution from a dictionary generated by as_dict().

print(mode: Literal['all', 'ions', 'cations', 'anions', 'neutrals'] = 'all', units: Literal['ppm', 'mol', 'mol/kg',
'mol/L', '%', 'activity'] = 'mol', places=4)

Print details about the Solution.

Parameters
• mode – Whether to list the amounts of all solutes, or only anions, cations, any ion, or any

neutral solute.

• units – The units to list solute amounts in. “activity” will list dimensionless activities
instead of concentrations.

• places – The number of decimal places to round the solute amounts.

to_json()→ str
Returns a json string representation of the MSONable object.

unsafe_hash()

Returns an hash of the current object. This uses a generic but low performance method of converting the
object to a dictionary, flattening any nested keys, and then performing a hash on the resulting object

classmethod validate_monty_v1(_MSONable__input_value)
Pydantic validator with correct signature for pydantic v1.x

classmethod validate_monty_v2(_MSONable__input_value, _)
Pydantic validator with correct signature for pydantic v2.x

classmethod from_preset(preset: Literal['seawater', 'rainwater', 'wastewater', 'urine', 'normal saline',
'Ringers lactate'])→ Solution

Instantiate a solution from a preset composition.

Parameters
preset (str) – String representing the desired solution. Valid entries are ‘seawater’, ‘rain-
water’, ‘wastewater’, ‘urine’, ‘normal saline’ and ‘Ringers lactate’.

Returns
A pyEQL Solution object.

Raises
FileNotFoundError – If the given preset file doesn’t exist on the file system.

Notes

The following sections explain the different solution options:

• ‘rainwater’ - pure water in equilibrium with atmospheric CO2 at pH 6

• ‘seawater’ or ‘SW’- Standard Seawater. See Table 4 of the Reference for Composition [1]_
• ‘wastewater’ or ‘WW’ - medium strength domestic wastewater. See Table 3-18 of [2]_
• ‘urine’ - typical human urine. See Table 3-15 of [2]_
• ‘normal saline’ or ‘NS’ - normal saline solution used in medicine [3]_
• ‘Ringers lacatate’ or ‘RL’ - Ringer’s lactate solution used in medicine [4]_

4.14. Solution Class Reference 77

https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/typing.html#typing.Literal
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/exceptions.html#FileNotFoundError

pyEQL Documentation, Release v0.15.1

References

to_file(filename: str | Path)→ None
Saving to a .yaml or .json file.

Parameters
filename (str | Path) – The path to the file to save Solution. Valid extensions are .json
or .yaml.

classmethod from_file(filename: str | Path)→ Solution
Loading from a .yaml or .json file.

Parameters
filename (str | Path) – Path to the .json or .yaml file (including extension) to load the
Solution from. Valid extensions are .json or .yaml.

Returns
A pyEQL Solution object.

Raises
FileNotFoundError – If the given filename doesn’t exist on the file system.

4.15 Module reference

These internal modules are used by Solution but typically are not directly accessed by the user.

4.15.1 Salt Matching module

pyEQL salt matching library.

This file contains functions that allow a pyEQL Solution object composed of individual species (usually ions) to be
mapped to a solution of one or more salts. This mapping is necessary because some parameters (such as activity
coefficient data) can only be determined for salts (e.g. NaCl) and not individual species (e.g. Na+)

copyright
2013-2024 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

class pyEQL.salt_ion_match.Salt(cation, anion)
Class to represent a salt.

get_effective_molality(ionic_strength)
Calculate the effective molality according to [?].

2𝐼

(𝜈+𝑧2+ + 𝜈−𝑧2−)

Parameters
ionic_strength – Quantity The ionic strength of the parent solution, mol/kg

Returns
the effective molality of the salt in the parent solution

Return type
Quantity

78 Chapter 4. Contents:

https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/constants.html#None
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/pathlib.html#pathlib.Path
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/exceptions.html#FileNotFoundError

pyEQL Documentation, Release v0.15.1

References

4.15.2 Modeling Engines module

pyEQL engines for computing aqueous equilibria (e.g., speciation, redox, etc.).

copyright
2013-2024 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

class pyEQL.engines.EOS

Abstract base class for pyEQL equation of state classes.

The intent is that concrete implementations of this class make use of the standalone functions available in
pyEQL.activity_correction and pyEQL.equilibrium as much as possible. This facilitates robust unit testing while
allowing users to “mix and match” or customize the various models as needed.

abstract equilibrate(solution)
Adjust the speciation and pH of a Solution object to achieve chemical equilibrium.

The Solution should be modified in-place, likely using add_moles / set_moles, etc.

Parameters
solution – pyEQL Solution object

Returns
Nothing. The speciation of the Solution is modified in-place.

Raises
ValueError if the calculation cannot be completed, e.g. due to
insufficient number of parameters or lack of convergence. –

abstract get_activity_coefficient(solution, solute)
Return the molal scale activity coefficient of solute, given a Solution object.

Parameters
• solution – pyEQL Solution object

• solute – str identifying the solute of interest

Returns
Quantity: dimensionless quantity object

Raises
ValueError if the calculation cannot be completed, e.g. due to
insufficient number of parameters. –

abstract get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of a Solution.

Parameters
solution – pyEQL Solution object

Returns
Quantity: dimensionless molal scale osmotic coefficient

4.15. Module reference 79

pyEQL Documentation, Release v0.15.1

Raises
ValueError if the calculation cannot be completed, e.g. due to
insufficient number of parameters. –

abstract get_solute_volume()

Return the volume of only the solutes.

Parameters
solution – pyEQL Solution object

Returns
Quantity: solute volume in L

Raises
ValueError if the calculation cannot be completed, e.g. due to
insufficient number of parameters. –

class pyEQL.engines.IdealEOS

Ideal solution equation of state engine.

equilibrate(solution)
Adjust the speciation of a Solution object to achieve chemical equilibrium.

get_activity_coefficient(solution, solute)
Return the molal scale activity coefficient of solute, given a Solution object.

get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of solute, given a Solution object.

get_solute_volume(solution)
Return the volume of the solutes.

class pyEQL.engines.NativeEOS(phreeqc_db: Literal['vitens.dat', 'wateq4f_PWN.dat', 'pitzer.dat', 'llnl.dat',
'geothermal.dat'] = 'llnl.dat')

pyEQL’s native EOS. Uses the Pitzer model when possible, falls back to other models (e.g. Debye-Huckel) based
on ionic strength if sufficient parameters are not available.

equilibrate(solution)
Adjust the speciation of a Solution object to achieve chemical equilibrium.

get_activity_coefficient(solution, solute)
Whenever the appropriate parameters are available, the Pitzer model [?] is used. If no Pitzer parameters
are available, then the appropriate equations are selected according to the following logic: [?].

I <= 0.0005: Debye-Huckel equation 0.005 < I <= 0.1: Guntelberg approximation 0.1 < I <= 0.5: Davies
equation I > 0.5: Raises a warning and returns activity coefficient = 1

The ionic strength, activity coefficients, and activities are all calculated based on the molal (mol/kg) concen-
tration scale. If a different scale is given as input, then the molal-scale activity coefficient 𝛾± is converted
according to [?]

𝑓± = 𝛾± * (1 +𝑀𝑤

∑︁
𝑖

𝜈𝑖𝑚𝑖)

𝑦± =
𝑚𝜌𝑤
𝐶𝛾±

80 Chapter 4. Contents:

https://docs.python.org/3.10/library/typing.html#typing.Literal

pyEQL Documentation, Release v0.15.1

where 𝑓± is the rational activity coefficient, 𝑀𝑤 is the molecular weight of water, the summation represents
the total molality of all solute species, 𝑦± is the molar activity coefficient, 𝜌𝑤 is the density of pure water,
𝑚 and 𝐶 are the molal and molar concentrations of the chosen salt (not individual solute), respectively.

Parameters
• solute – String representing the name of the solute of interest

• scale – The concentration scale for the returned activity coefficient. Valid options are
“molal”, “molar”, and “rational” (i.e., mole fraction). By default, the molal scale activity
coefficient is returned.

Returns
The mean ion activity coefficient of the solute in question on the selected scale.

Notes

For multicomponent mixtures, pyEQL implements the “effective Pitzer model” presented by Mistry et al.
[?]. In this model, the activity coefficient of a salt in a multicomponent mixture is calculated using an
“effective molality,” which is the molality that would result in a single-salt mixture with the same total
ionic strength as the multicomponent solution.

𝑚𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
2𝐼

(𝜈+𝑧2+ + 𝜈− − 𝑧2−)

References

See also:
pyEQL.solution.Solution.ionic_strength pyEQL.activity_correction.
get_activity_coefficient_debyehuckel() pyEQL.activity_correction.
get_activity_coefficient_guntelberg() pyEQL.activity_correction.
get_activity_coefficient_davies() pyEQL.activity_correction.
get_activity_coefficient_pitzer()

get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of solute, given a Solution object.

Osmotic coefficient is calculated using the Pitzer model. [?] If appropriate parameters for the model are
not available, then pyEQL raises a WARNING and returns an osmotic coefficient of 1.

If the ‘rational’ scale is given as input, then the molal-scale osmotic coefficient 𝜑 is converted according to
[?]

𝑔 = −𝜑𝑀𝑤

∑︀
𝑖 𝜈𝑖𝑚𝑖

ln𝑥𝑤

where 𝑔 is the rational osmotic coefficient, 𝑀𝑤 is the molecular weight of water, the summation represents
the total molality of all solute species, and 𝑥𝑤 is the mole fraction of water.

Parameters
scale – The concentration scale for the returned osmotic coefficient. Valid options are “mo-
lal”, “rational” (i.e., mole fraction), and “fugacity”. By default, the molal scale osmotic co-
efficient is returned.

Returns
The osmotic coefficient

4.15. Module reference 81

pyEQL Documentation, Release v0.15.1

Return type
Quantity

See also:
pyEQL.solution.Solution.get_water_activity() pyEQL.solution.Solution.get_salt()
pyEQL.solution.Solution.ionic_strength

Notes

For multicomponent mixtures, pyEQL adopts the “effective Pitzer model” presented by Mistry et al. [?].
In this approach, the osmotic coefficient of each individual salt is calculated using the normal Pitzer
model based on its respective concentration. Then, an effective osmotic coefficient is calculated as the
concentration-weighted average of the individual osmotic coefficients.

For example, in a mixture of 0.5 M NaCl and 0.5 M KBr, one would calculate the osmotic coefficient for
each salt using a concentration of 0.5 M and an ionic strength of 1 M. Then, one would average the two
resulting osmotic coefficients to obtain an effective osmotic coefficient for the mixture.

(Note: in the paper referenced below, the effective osmotic coefficient is determined by weighting using the
“effective molality” rather than the true molality. Subsequent checking and correspondence with the author
confirmed that the weight factor should be the true molality, and that is what is implemented in pyEQL.)

References

Examples

>>> s1 = pyEQL.Solution([['Na+','0.2 mol/kg'],['Cl-','0.2 mol/kg']])
>>> s1.get_osmotic_coefficient()
<Quantity(0.923715281, 'dimensionless')>

>>> s1 = pyEQL.Solution([['Mg+2','0.3 mol/kg'],['Cl-','0.6 mol/kg']],
→˓temperature='30 degC')
>>> s1.get_osmotic_coefficient()
<Quantity(0.891409618, 'dimensionless')>

get_solute_volume(solution)
Return the volume of the solutes.

class pyEQL.engines.PhreeqcEOS(phreeqc_db: Literal['vitens.dat', 'wateq4f_PWN.dat', 'pitzer.dat', 'llnl.dat',
'geothermal.dat'] = 'phreeqc.dat')

Engine based on the PhreeqC model, as implemented via the phreeqpython package.

get_activity_coefficient(solution, solute)
Return the molal scale activity coefficient of solute, given a Solution object.

get_osmotic_coefficient(solution)
Return the molal scale osmotic coefficient of solute, given a Solution object.

PHREEQC appears to assume a unit osmotic coefficient unless the pitzer database is used. Unfortunately,
there is no easy way to access the osmotic coefficient via phreeqcpython

get_solute_volume(solution)
Return the volume of the solutes.

82 Chapter 4. Contents:

https://docs.python.org/3.10/library/typing.html#typing.Literal

pyEQL Documentation, Release v0.15.1

4.15.3 Activity Correction functions

pyEQL activity correction library.

This file contains functions for computing molal-scale activity coefficients of ions and salts in aqueous solution.

Individual functions for activity coefficients are defined here so that they can be used independently of a pyEQL solution
object. Normally, these functions are called from within the get_activity_coefficient method of the Solution class.

copyright
2013-2024 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

pyEQL.activity_correction._debye_parameter_B(temperature: str = '25 degC')→ Quantity
Return the constant B used in the extended Debye-Huckel equation.

Parameters
temperature – The temperature of the solution at which to calculate the constant. Defaults to
‘25 degC’.

Returns
The parameter B for use in extended Debye-Huckel equation (base e). For base 10, divide the
resulting value by 2.303. Note that A is often given in base 10 terms in older textbooks and
reference material (0.3281 at 25 degC).

Notes

The parameter B is equal to:

𝐵 =

(︂
2𝑁𝐴𝜌𝑤𝑒

2

𝜖𝑜𝜖𝑟𝑘𝑇

)︂ 1
2

References

Bockris and Reddy. /Modern Electrochemistry/, vol 1. Plenum/Rosetta, 1977, p.210.

Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law
Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_
Chemistry_(LibreTexts)/25%3A_Solutions_II_-_Nonvolatile_Solutes/25.06%3A_The_Debye-Huckel_Theory

https://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equation

pyEQL.activity_correction._debye_parameter_activity(temperature: str = '25 degC')→ Quantity
Return the constant A for use in the Debye-Huckel limiting law (base e).

Parameters
temperature – The temperature of the solution at which to calculate the constant. Defaults to
‘25 degC’.

Returns
The parameter A for use in the Debye-Huckel limiting law (base e). For base 10, divide the
resulting value by 2.303. Note that A is often given in base 10 terms in older textbooks and
reference material (0.509 at 25 degC).

4.15. Module reference 83

https://docs.python.org/3.10/library/stdtypes.html#str
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/25%3A_Solutions_II_-_Nonvolatile_Solutes/25.06%3A_The_Debye-Huckel_Theory
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/25%3A_Solutions_II_-_Nonvolatile_Solutes/25.06%3A_The_Debye-Huckel_Theory
https://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equation
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

Notes

The parameter A is equal to:

𝐴𝛾 =
𝑒3
(︀
2𝜋𝑁𝐴𝜌

)︀0.5
(4𝜋𝜖𝑜𝜖𝑟𝑘𝑇)1.5

Note that this equation returns the parameter value that can be used to calculate the natural logarithm of the
activity coefficient. For base 10, divide the value returned by 2.303.

References

Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water and Debye-Huckel Limiting Law
Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_
Chemistry_(LibreTexts)/25%3A_Solutions_II_-_Nonvolatile_Solutes/25.06%3A_The_Debye-Huckel_Theory

https://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equation

See also:
_debye_parameter_osmotic()

pyEQL.activity_correction._debye_parameter_osmotic(temperature='25 degC')
Return the constant A_phi for use in calculating the osmotic coefficient according to Debye-Huckel theory.

Parameters
temperature – String representing the temperature of the solution. Defaults to ‘25 degC’ if not
specified.

Notes

Not to be confused with the Debye-Huckel constant used for activity coefficients in the limiting law. Takes the
value 0.392 at 25 C. This constant is calculated according to: [kim] [arch]

𝐴𝜑 =
1

3
𝐴𝛾

References

J. Chemical Engineering Data 33, pp.177-184.

and Debye-Huckel Limiting Law Slopes.” /J. Phys. Chem. Ref. Data/ 19(2), 1990.

Examples

>>> _debye_parameter_osmotic()
0.3916...

See also:
_debye_parameter_activity()

84 Chapter 4. Contents:

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/25%3A_Solutions_II_-_Nonvolatile_Solutes/25.06%3A_The_Debye-Huckel_Theory
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/25%3A_Solutions_II_-_Nonvolatile_Solutes/25.06%3A_The_Debye-Huckel_Theory
https://en.wikipedia.org/wiki/Debye%E2%80%93H%C3%BCckel_equation

pyEQL Documentation, Release v0.15.1

pyEQL.activity_correction._debye_parameter_volume(temperature='25 degC')
Return the constant A_V, the Debye-Huckel limiting slope for apparent molar volume.

Parameters
temperature – String representing the temperature of the solution. Defaults to ‘25 degC’ if not
specified.

Notes

Takes the value 1.8305 cm ** 3 * kg ** 0.5 / mol ** 1.5 at 25 C. This constant is calculated according to: [1]_

𝐴𝑉 = −2𝐴𝜑𝑅𝑇
[︀3
𝜖

𝜕𝜖

𝜕𝑝
− 1

𝜌

𝜕𝜌

𝜕𝑝

]︀
Notes: at this time, the term in brackets (containing the partial derivatives) is approximate. These approximations
give the correct value of the slope at 25 degC and produce estimates with less than 10% error between 0 and 60
degC.

The derivative of epsilon with respect to pressure is assumed constant (for atmospheric pressure) at -0.01275
1/MPa. Note that the negative sign does not make sense in light of real data, but is required to give the correct
result.

The second term is equivalent to the inverse of the bulk modulus of water, which is taken to be 2.2 GPa. [2]_

References

See also:
_debye_parameter_osmotic()

pyEQL.activity_correction._pitzer_B_MX(ionic_strength, alpha1, alpha2, beta0, beta1, beta2)
Return the B_MX coefficient for the Pitzer ion interaction model.

𝐵𝑀𝑋 = 𝛽0 + 𝛽1𝑓1(𝛼1𝐼
0.5) + 𝛽2𝑓2(𝛼2𝐼

0.5)

Parameters
• ionic_strength – The ionic strength of the parent solution, mol/kg

• alpha1 – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

• alpha2 – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5

• beta0 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta1 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta2 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

Returns
The B_MX parameter for the Pitzer ion interaction model.

4.15. Module reference 85

pyEQL Documentation, Release v0.15.1

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

See also:
_pitzer_f1()

pyEQL.activity_correction._pitzer_B_phi(ionic_strength, alpha1, alpha2, beta0, beta1, beta2)
Returns the B^Phi coefficient for the Pitzer ion interaction model.

This function calculates the B^Phi coefficient using the formula:

𝐵Φ = 𝛽0 + 𝛽1 exp(−𝛼1𝐼
0.5) + 𝛽2 exp(−𝛼2𝐼

0.5)

or

𝐵Φ = 𝐵𝛾 −𝐵𝑀𝑋

Parameters
• ionic_strength – The ionic strength of the parent solution, mol/kg.

• alpha1 – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5.

• alpha2 – Coefficients for the Pitzer model, kg ** 0.5 / mol ** 0.5.

• beta0 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta1 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta2 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

Returns
The B^Phi parameter for the Pitzer ion interaction model.

Return type
float

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from
278 to 308 K and Representation with an Ion Interaction (Pitzer) Model. Journal of Chemical & Engineering
Data, 55(2), 830-838. doi:10.1021/je900487a

86 Chapter 4. Contents:

https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

pyEQL.activity_correction._pitzer_f1(x)
The function of ionic strength used to calculate beta_MX in the Pitzer ion interaction model.

𝑓(𝑥) = 2[1− (1 + 𝑥) exp(−𝑥)]/𝑥2

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

pyEQL.activity_correction._pitzer_f2(x)
The function of ionic strength used to calculate beta_gamma in the Pitzer ion interaction model.

𝑓(𝑥) = − 2

𝑥2
[1− (

1 + 𝑥+ 𝑥2

2
) exp(−𝑥)]

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

pyEQL.activity_correction._pitzer_log_gamma(ionic_strength, molality, B_MX, B_phi, C_phi, z_cation,
z_anion, nu_cation, nu_anion, temperature='25 degC',
b=<Quantity(1.2, 'kilogram ** 0.5 / mole ** 0.5')>)

Returns the natural logarithm of the binary activity coefficient calculated by the Pitzer ion interaction model.

ln 𝛾𝑀𝑋 = −|𝑧+𝑧−|𝐴𝑃ℎ𝑖(
𝐼0.5

(1 + 𝑏𝐼0.5)
+

2

𝑏
ln (1 + 𝑏𝐼0.5)) +

𝑚(2𝜈+𝜈−)

(𝜈+ + 𝜈−)
(𝐵𝑀𝑋 +𝐵Φ

𝑀𝑋) +
𝑚2(3(𝜈+𝜈−)

1.5

(𝜈+ + 𝜈−))
𝐶Φ

𝑀𝑋

Parameters
• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg.

• molality (Quantity) – The concentration of the salt, mol/kg.

• B_MX (Quantity) – Calculated parameters for the Pitzer ion interaction model.

• B_phi (Quantity) – Calculated parameters for the Pitzer ion interaction model.

• C_phi (Quantity) – Calculated parameters for the Pitzer ion interaction model.

• z_cation (int) – The formal charge on the cation and anion, respectively.

• z_anion (int) – The formal charge on the cation and anion, respectively.

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt.

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt.

• temperature (str, Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

4.15. Module reference 87

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

• b (number, optional) – Coefficient. Usually set equal to 1.2 kg ** 0.5 / mol ** 0.5 and
considered independent of temperature and pressure.

Returns
The natural logarithm of the binary activity coefficient calculated by the Pitzer ion interaction
model.

Return type
float

References

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

pyEQL.activity_correction.get_activity_coefficient_davies(ionic_strength, z=1, temperature='25
degC')

Return the activity coefficient of solute in the parent solution according to the Davies equation.

Parameters
• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg.

• z (int, optional) – The charge on the solute, including sign. Defaults to +1 if not speci-
fied.

• temperature (str, Quantity, optional) – String representing the temperature of the
solution. Defaults to ‘25 degC’ if not specified.

Returns
The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless.

Return type
Quantity

Notes

Activity coefficient is calculated according to:

ln 𝛾 = 𝐴𝛾𝑧2𝑖 (

√
𝐼

(1 +
√
𝐼)

+ 0.2𝐼)

Valid for 0.1 < I < 0.5

See also:
_debye_parameter_activity() get_activity_coefficient_debyehuckel()
get_activity_coefficient_guntelberg()

88 Chapter 4. Contents:

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed,
pp 103. Wiley Interscience, 1996.

pyEQL.activity_correction.get_activity_coefficient_debyehuckel(ionic_strength, z=1,
temperature='25 degC')

Return the activity coefficient of solute in the parent solution according to the Debye-Huckel limiting law.

Parameters
• z (int, optional) – The charge on the solute, including sign. Defaults to +1 if not speci-

fied.

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg.

• temperature (str, Quantity, optional) – String representing the temperature of the
solution. Defaults to ‘25 degC’ if not specified.

Returns
The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless.

Return type
Quantity

Notes

Activity coefficient is calculated according to:

ln 𝛾 = 𝐴𝛾𝑧2𝑖
√
𝐼

Valid only for I < 0.005

See also:
_debye_parameter_activity() get_activity_coefficient_davies()
get_activity_coefficient_guntelberg()

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed,
pp 103. Wiley Interscience, 1996.

pyEQL.activity_correction.get_activity_coefficient_guntelberg(ionic_strength, z=1,
temperature='25 degC')

Return the activity coefficient of solute in the parent solution according to the Guntelberg approximation.

Parameters
• z (int, optional) – The charge on the solute, including sign. Defaults to +1 if not speci-

fied.

• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg.

• temperature (str, Quantity, optional) – String representing the temperature of the
solution. Defaults to ‘25 degC’ if not specified.

Returns
The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless.

4.15. Module reference 89

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

Return type
Quantity

Notes

Activity coefficient is calculated according to:

ln 𝛾 = 𝐴𝛾𝑧2𝑖

√
𝐼

(1 +
√
𝐼)

Valid for I < 0.1

See also:
_debye_parameter_activity() get_activity_coefficient_davies()
get_activity_coefficient_debyehuckel()

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed,
pp 103. Wiley Interscience, 1996.

pyEQL.activity_correction.get_activity_coefficient_pitzer(ionic_strength, molality, alpha1, alpha2,
beta0, beta1, beta2, C_phi, z_cation,
z_anion, nu_cation, nu_anion,
temperature='25 degC', b=1.2)

Return the activity coefficient of solute in the parent solution according to the Pitzer model.

Parameters
• ionic_strength – The ionic strength of the parent solution, mol/kg

• molality – The molal concentration of the parent salt, mol/kg

• alpha1 – Coefficients for the Pitzer model. This function assigns the coefficients proper
units of kg ** 0.5 / mol ** 0.5 after they are entered.

• alpha2 – Coefficients for the Pitzer model. This function assigns the coefficients proper
units of kg ** 0.5 / mol ** 0.5 after they are entered.

• beta0 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta1 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta2 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• C_phi – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• z_cation – The charge on the cation and anion, respectively

• z_anion – The charge on the cation and anion, respectively

• nu_cation – The stoichiometric coefficient of the cation and anion in the salt

• nu_anion – The stoichiometric coefficient of the cation and anion in the salt

90 Chapter 4. Contents:

pyEQL Documentation, Release v0.15.1

• temperature – String representing the temperature of the solution. Defaults to ‘25 degC’
if not specified.

• b – Coefficient. Usually set equal to 1.2 and considered independent of temperature and
pressure. If provided, this coefficient is assigned proper units of kg ** 0.5 / mol ** 0.5 after
entry.

Returns
Quantity

The mean molal (mol/kg) scale ionic activity coefficient of solute, dimensionless

Examples

>>> get_activity_coefficient_pitzer(0.5*ureg.Quantity('mol/kg'),0.5*ureg.Quantity(
→˓'mol/kg'),1,0.5,-.0181191983,-.4625822071,.4682,.000246063,1,-1,1,1,b=1.2)
0.61915...

>>> get_activity_coefficient_pitzer(5.6153*ureg.Quantity('mol/kg'),5.6153*ureg.
→˓Quantity('mol/kg'),3,0.5,0.0369993,0.354664,0.0997513,-0.00171868,1,-1,1,1,b=1.2)
0.76331...

Notes: the examples below are for comparison with experimental and modeling data presented in the May et al
reference below.

10 mol/kg ammonium nitrate. Estimated result (from graph) = 0.2725

>>> get_activity_coefficient_pitzer(10*ureg.Quantity('mol/kg'),10*ureg.Quantity(
→˓'mol/kg'),2,0,-0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)
0.22595 ...

5 mol/kg ammonium nitrate. Estimated result (from graph) = 0.3011

>>> get_activity_coefficient_pitzer(5*ureg.Quantity('mol/kg'),5*ureg.Quantity('mol/
→˓kg'),2,0,-0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)
0.30249 ...

18 mol/kg ammonium nitrate. Estimated result (from graph) = 0.1653

>>> get_activity_coefficient_pitzer(18*ureg.Quantity('mol/kg'),18*ureg.Quantity(
→˓'mol/kg'),2,0,-0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)
0.16241 ...

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

4.15. Module reference 91

pyEQL Documentation, Release v0.15.1

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from
278 to 308 K and Representation with an Ion Interaction (Pitzer) Model. Journal of Chemical & Engineering
Data, 55(2), 830-838. doi:10.1021/je900487a

See also:
_debye_parameter_activity() _pitzer_B_MX() _pitzer_B_phi() _pitzer_log_gamma()

pyEQL.activity_correction.get_apparent_volume_pitzer(ionic_strength, molality, alpha1, alpha2, beta0,
beta1, beta2, C_phi, V_o, z_cation, z_anion,
nu_cation, nu_anion, temperature='25 degC',
b=1.2)

Return the apparent molar volume of solute in the parent solution according to the Pitzer model.

Parameters
• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg.

• molality (Quantity) – The molal concentration of the parent salt, mol/kg.

• alpha1 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• alpha2 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• beta0 (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• beta1 (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• beta2 (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• C_phi (number) – Pitzer coefficients for the apparent molar volume. These ion-interaction
parameters are specific to each salt system.

• V_o (number) – The V^o Pitzer coefficient for the apparent molar volume.

• z_cation (int) – The formal charge on the cation and anion, respectively.

• z_anion (int) – The formal charge on the cation and anion, respectively.

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt.

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt.

• temperature (str, Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

• b (number, optional) – Coefficient. Usually set equal to 1.2 and considered independent
of temperature and pressure. If provided, this coefficient is assigned proper units of kg **
0.5 / mol ** 0.5 after entry.

Returns
The apparent molar volume of the solute, cm ** 3 / mol.

Return type
Quantity

92 Chapter 4. Contents:

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

Examples

Notes: the example below is for comparison with experimental and modeling data presented in the Krumgalz et
al reference below.

0.25 mol/kg CuSO4. Expected result (from graph) = 0.5 cm ** 3 / mol

>>> get_apparent_volume_pitzer(1.0*ureg.Quantity('mol/kg'),0.25*ureg.Quantity('mol/
→˓kg'),1.4,12,0.001499,-0.008124,0.2203,-0.0002589,-6,2,-2,1,1,b=1.2)
0.404...

1.0 mol/kg CuSO4. Expected result (from graph) = 4 cm ** 3 / mol

>>> get_apparent_volume_pitzer(4.0*ureg.Quantity('mol/kg'),1.0*ureg.Quantity('mol/kg
→˓'),1.4,12,0.001499,-0.008124,0.2203,-0.0002589,-6,2,-2,1,1,b=1.2)
4.424...

10.0 mol/kg ammonium nitrate. Expected result (from graph) = 50.3 cm ** 3 / mol

>>> get_apparent_volume_pitzer(10.0*ureg.Quantity('mol/kg'),10.0*ureg.Quantity('mol/
→˓kg'),2,0,0.000001742,0.0002926,0,0.000000424,46.9,1,-1,1,1,b=1.2)
50.286...

20.0 mol/kg ammonium nitrate. Expected result (from graph) = 51.2 cm ** 3 / mol

>>> get_apparent_volume_pitzer(20.0*ureg.Quantity('mol/kg'),20.0*ureg.Quantity('mol/
→˓kg'),2,0,0.000001742,0.0002926,0,0.000000424,46.9,1,-1,1,1,b=1.2)
51.145...

Notes: the examples below are for comparison with experimental and modeling data presented in the Krumgalz
et al reference below.

0.8 mol/kg NaF. Expected result = 0.03

>>> get_apparent_volume_pitzer(0.8*ureg.Quantity('mol/kg'),0.8*ureg.Quantity('mol/kg
→˓'),2,0,0.000024693,0.00003169,0,-0.000004068,-2.426,1,-1,1,1,b=1.2)
0.22595 ...

References

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

Krumgalz, Boris S., Pogorelsky, Rita (1996). Volumetric Properties of Single Aqueous Electrolytes from Zero
to Saturation Concentration at 298.15 K Represented by Pitzer’s Ion-Interaction Equations. Journal of Physical
Chemical Reference Data, 25(2), 663-689.

See also:
_debye_parameter_volume() _pitzer_B_MX()

pyEQL.activity_correction.get_osmotic_coefficient_pitzer(ionic_strength, molality, alpha1, alpha2,
beta0, beta1, beta2, C_phi, z_cation,
z_anion, nu_cation, nu_anion,
temperature='25 degC', b=1.2)

Return the osmotic coefficient of water in an electrolyte solution according to the Pitzer model.

4.15. Module reference 93

pyEQL Documentation, Release v0.15.1

Parameters
• ionic_strength (Quantity) – The ionic strength of the parent solution, mol/kg.

• molality (Quantity) – The molal concentration of the parent salt, mol/kg.

• alpha1 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• alpha2 (number) – Coefficients for the Pitzer model. This function assigns the coefficients
proper units of kg ** 0.5 / mol ** 0.5 after they are entered.

• beta0 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta1 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• beta2 – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• C_phi – Coefficients for the Pitzer model. These ion-interaction parameters are specific to
each salt system.

• z_cation (int) – The formal charge on the cation and anion, respectively.

• z_anion (int) – The formal charge on the cation and anion, respectively.

• nu_cation (int) – The stoichiometric coefficient of the cation and anion in the salt.

• nu_anion (int) – The stoichiometric coefficient of the cation and anion in the salt.

• temperature (str, Quantity) – String representing the temperature of the solution. De-
faults to ‘25 degC’ if not specified.

• b (number, optional) – Coefficient. Usually set equal to 1.2 and considered independent
of temperature and pressure. If provided, this coefficient is assigned proper units of kg **
0.5 / mol ** 0.5 after entry.

Returns
The osmotic coefficient of water, dimensionless.

Return type
Quantity

Examples

Experimental value according to Beyer and Stieger reference is 1.3550

>>> get_osmotic_coefficient_pitzer(10.175*ureg.Quantity('mol/kg'),10.175*ureg.
→˓Quantity('mol/kg'),1,0.5,-.0181191983,-.4625822071,.4682,.000246063,1,-1,1,1,b=1.
→˓2)
1.3552 ...

Experimental value according to Beyer and Stieger reference is 1.084

>>> get_osmotic_coefficient_pitzer(5.6153*ureg.Quantity('mol/kg'),5.6153*ureg.
→˓Quantity('mol/kg'),3,0.5,0.0369993,0.354664,0.0997513,-0.00171868,1,-1,1,1,b=1.2)
1.0850 ...

94 Chapter 4. Contents:

https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

Notes: the examples below are for comparison with experimental and modeling data presented in the May et al
reference below.

10 mol/kg ammonium nitrate. Estimated result (from graph) = 0.62

>>> get_osmotic_coefficient_pitzer(10*ureg.Quantity('mol/kg'),10*ureg.Quantity('mol/
→˓kg'),2,0,-0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)
0.6143 ...

5 mol/kg ammonium nitrate. Estimated result (from graph) = 0.7

>>> get_osmotic_coefficient_pitzer(5*ureg.Quantity('mol/kg'),5*ureg.Quantity('mol/kg
→˓'),2,0,-0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)
0.6925 ...

18 mol/kg ammonium nitrate. Estimated result (from graph) = 0.555

>>> get_osmotic_coefficient_pitzer(18*ureg.Quantity('mol/kg'),18*ureg.Quantity('mol/
→˓kg'),2,0,-0.01709,0.09198,0,0.000419,1,-1,1,1,b=1.2)
0.5556 ...

References

Scharge, T., Munoz, A.G., and Moog, H.C. (2012). Activity Coefficients of Fission Products in Highly Salinary
Solutions of Na+, K+, Mg2+, Ca2+, Cl-, and SO42- : Cs+. /Journal of Chemical& Engineering Data (57), p.
1637-1647.

Kim, H., & Jr, W. F. (1988). Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 degree
C. 1. Single salt parameters. Journal of Chemical and Engineering Data, (2), 177-184.

May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

Beyer, R., & Steiger, M. (2010). Vapor Pressure Measurements of NaHCOO + H 2 O and KHCOO + H 2 O from
278 to 308 K and Representation with an Ion Interaction (Pitzer) Model. Journal of Chemical & Engineering
Data, 55(2), 830-838. doi:10.1021/je900487a

See also:
_debye_parameter_activity() _pitzer_B_MX() _pitzer_B_phi() _pitzer_log_gamma()

4.15.4 Speciation functions

pyEQL methods for chemical equilibrium calculations (e.g. acid/base, reactions, redox, complexation, etc.).

NOTE: these methods are not currently used but are here for the future.

copyright
2013-2024 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

pyEQL.equilibrium.adjust_temp_arrhenius(rate_constant, activation_energy, temperature,
reference_temperature=<Quantity(25, 'degree_Celsius')>)

Adjust a reaction equilibrium constant from one temperature to another.

4.15. Module reference 95

pyEQL Documentation, Release v0.15.1

Parameters
• rate_constant (Quantity) – The parameter value (usually a rate constant) being adjusted.

• activation_energy (Quantity) – The activation energy of the process, in kJ/mol.

• temperature (Quantity) – The desired reaction temperature.

• reference_temperature (Quantity, optional) – The temperature at which equilib-
rium_constant is valid. Defaults to 25 degrees C if omitted.

Returns
The adjusted reaction equilibrium constant.

Return type
Quantity

Notes

This function implements the Arrhenius equation to adjust measured rate constants to other temperatures. TODO
- add better reference

𝑙𝑛(
𝐾2

𝐾1
=

𝐸𝑎

𝑅
(
1

𝑇1
− 1

𝑇2
)

References

http://chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Reaction_Rates/Temperature_Dependence_of_
Reaction_Rates/Arrhenius_Equation

Examples

>>> adjust_temp_arrhenius(7,900*ureg.Quantity('kJ/mol'),37*ureg.Quantity('degC'),
→˓97*ureg.Quantity('degC'))
1.8867225...e-24

pyEQL.equilibrium.adjust_temp_pitzer(c1, c2, c3, c4, c5, temp, temp_ref=<Quantity(298.15, 'kelvin')>)
Calculate a parameter for the Pitzer model based on temperature-dependent coefficients c1,c2,c3,c4,and c5.

Parameters
• c1 (float) – Temperature-dependent coefficients for the pitzer parameter of interest.

• c2 (float) – Temperature-dependent coefficients for the pitzer parameter of interest.

• c3 (float) – Temperature-dependent coefficients for the pitzer parameter of interest.

• c4 (float) – Temperature-dependent coefficients for the pitzer parameter of interest.

• c5 (float) – Temperature-dependent coefficients for the pitzer parameter of interest.

• temp (Quantity) – The temperature at which the Pitzer parameter is to be calculated.

• temp_ref (Quantity, optional) – The reference temperature on which the parameters
are based. Defaults to 298.15 K if omitted.

Note: As described in the PHREEQC documentation.

96 Chapter 4. Contents:

http://chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Reaction_Rates/Temperature_Dependence_of_Reaction_Rates/Arrhenius_Equation
http://chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Reaction_Rates/Temperature_Dependence_of_Reaction_Rates/Arrhenius_Equation
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

pyEQL.equilibrium.adjust_temp_vanthoff(equilibrium_constant, enthalpy, temperature,
reference_temperature=<Quantity(25, 'degree_Celsius')>)

Adjust a reaction equilibrium constant from one temperature to another.

Parameters
• equilibrium_constant (float) – The reaction equilibrium constant for the reaction.

• enthalpy (Quantity) – The enthalpy change (delta H) for the reaction in kJ/mol. Assumed
independent of temperature (see Notes).

• temperature (Quantity) – The desired reaction temperature in degrees Celsius.

• reference_temperature (Quantity, optional) – The temperature at which equilib-
rium_constant is valid. Defaults to 25 degrees C if omitted.

Returns
The adjusted reaction equilibrium constant.

Return type
float

Note: This function implements the Van’t Hoff equation to adjust measured equilibrium constants to other
temperatures.

𝑙𝑛(𝐾2/𝐾1) =
𝛿𝐻

𝑅
(
1

𝑇1
− 1

𝑇2
)

This implementation assumes that the enthalpy is independent of temperature over the range of interest.

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed, pp 53. Wiley Interscience, 1996.

Examples

>>> adjust_temp_vanthoff(0.15,ureg.Quantity('-197.6 kJ/mol'),ureg.Quantity('42 degC
→˓'),ureg.Quantity(' 25degC'))
0.00203566...

If the ‘ref_temperature’ parameter is omitted, a default of 25 C is used.

>>> adjust_temp_vanthoff(0.15,ureg.Quantity('-197.6 kJ/mol'),ureg.Quantity('42 degC
→˓'))
0.00203566...

pyEQL.equilibrium.alpha(n, pH, pKa_list)
Returns the acid-base distribution coefficient (alpha) of an acid in the n-deprotonated form at a given pH.

Parameters
• n (int) – The number of protons that have been lost by the desired form of the acid. Also

the subscript on the alpha value. E.g. for bicarbonate (HCO3-), n=1 because 1 proton has
been lost from the fully-protonated carbonic acid (H2CO3) form.

• pH (float or int) – The pH of the solution.

4.15. Module reference 97

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#int
https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#int

pyEQL Documentation, Release v0.15.1

• pKa_list (list of floats or ints) – The pKa values (negative log of equilibrium
constants) for the acid of interest. There must be a minimum of n pKa values in the list.

Returns
The fraction of total acid present in the specified form.

Return type
float

Notes

The acid-base coefficient is calculated as follows: [?]

𝛼𝑛 =
𝑡𝑒𝑟𝑚𝑛

[𝐻+]𝑛 + 𝑘𝑎1[𝐻+]𝑛−1 + 𝑘𝑎1𝑘𝑎2[𝐻+]𝑛−2...𝑘𝑎1𝑘𝑎2...𝑘𝑎𝑛

Where :math: ‘term_n’ refers to the nth term in the denominator, starting from 0

References

Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed, pp 127-130. Wiley Interscience, 1996.

Examples

>>> alpha(1,8,[4.7])
0.999...

The sum of all alpha values should equal 1

>>> alpha(0,8,[6.35,10.33])
0.021...
>>> alpha(1,8,[6.35,10.33])
0.979...
>>> alpha(2,8,[6.35,10.33])
2.043...e-09

If pH is equal to one of the pKa values the function should return 0.5.

>>> alpha(1,6.35,[6.35,10.33])
0.5

4.15.5 Utilities

pyEQL utilities

copyright
2013-2024 by Ryan S. Kingsbury

license
LGPL, see LICENSE for more details.

98 Chapter 4. Contents:

https://docs.python.org/3.10/library/stdtypes.html#list
https://docs.python.org/3.10/library/functions.html#float

pyEQL Documentation, Release v0.15.1

class pyEQL.utils.FormulaDict(dict=None, / , **kwargs)
Automatically converts keys on get/set using pymatgen.core.Ion.from_formula(key).reduced_formula.

This allows getting/setting/updating of Solution.components using flexible formula notation (e.g., “Na+”,
“Na+1”, “Na[+]” all have the same effect)

pyEQL.utils.create_water_substance(temperature: float, pressure: float)
Instantiate a water substance model from IAPWS.

Parameters
• temperature – the desired temperature in K

• pressure – the desired pressure in MPa

Notes

The IAPWS97 model is much faster than IAPWS95, but the latter can do temp below zero. See https://github.
com/jjgomera/iapws/issues/14. Hence, IAPWS97 will be used except when temperature is less than 0 degC.

Returns
A IAPWS97 or IAPWS95 instance

pyEQL.utils.format_solutes_dict(solute_dict: dict, units: str)
Formats a dictionary of solutes by converting the amount to a string with the provided units suitable for passing
to use with the Solution class. Note that all solutes must be given in the same units.

Parameters
• solute_dict – The dictionary to format. This must be of the form dict{str: Number} e.g.

{“Na+”: 0.5, “Cl-”: 0.9}

• units – The units to use for the solute. e.g. “mol/kg”

Returns
A formatted solute dictionary.

Raises
TypeError if solute_dict is not a dictionary. –

pyEQL.utils.interpret_units(unit: str)→ str
Translate commonly used environmental units such as ‘ppm’ into strings that pint can understand.

Parameters
unit – string representing the unit to translate

Returns: a unit that pint can understand

pyEQL.utils.standardize_formula(formula: str)
Convert a chemical formula into standard form.

Parameters
formula – the chemical formula to standardize.

Returns
A standardized chemical formula

Raises
ValueError if formula cannot be processed or is invalid. –

4.15. Module reference 99

https://docs.python.org/3.10/library/functions.html#float
https://docs.python.org/3.10/library/functions.html#float
https://github.com/jjgomera/iapws/issues/14
https://github.com/jjgomera/iapws/issues/14
https://docs.python.org/3.10/library/stdtypes.html#dict
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str
https://docs.python.org/3.10/library/stdtypes.html#str

pyEQL Documentation, Release v0.15.1

Notes

Currently this method standardizes formulae by passing them through pymatgen.core.ion.Ion.reduced_formula().
For ions, this means that 1) the charge number will always be listed explicitly and 2) the charge number will be
enclosed in square brackets to remove any ambiguity in the meaning of the formula. For example, ‘Na+’, ‘Na+1’,
and ‘Na[+]’ will all standardize to “Na[+1]”

4.16 Contributing to pyEQL

4.16.1 Reporting Issues

You can help the project simply by using pyEQL and comparing the output to experimental data and/or other models
and tools. If you encounter any bugs, packaging issues, feature requests, comments, or questions, please report them
using the issue tracker on github.

Tip: Please don’t forget to include the closed issues in your search. Sometimes a solution was already reported, and
the problem is considered solved.

New issue reports should include information about your programming environment (e.g., operating system, Python
version) and steps to reproduce the problem. Please try also to simplify the reproduction steps to a very minimal
example that still illustrates the problem you are facing. By removing other factors, you help us to identify the root
cause of the issue.

4.16.2 Documentation Improvements

You can help improve pyEQL docs by making them more readable and coherent, or by adding missing information and
correcting mistakes.

pyEQL documentation uses Sphinx as its main documentation compiler. This means that the docs are kept in the same
repository as the project code, and that any documentation update is done in the same way was a code contribution.

Tip: Please notice that the [GitHub web interface] provides a quick way of propose changes in pyEQL’s files. While
this mechanism can be tricky for normal code contributions, it works perfectly fine for contributing to the docs, and
can be quite handy.

If you are interested in trying this method out, please navigate to the docs folder in the source [repository], find which
file you would like to propose changes and click in the little pencil icon at the top, to open [GitHub’s code editor]. Once
you finish editing the file, please write a message in the form at the bottom of the page describing which changes have
you made and what are the motivations behind them and submit your proposal.

When working on documentation changes in your local machine, you can compile them using [tox] :

tox -e docs

and use Python’s built-in web server for a preview in your web browser (http://localhost:8000):

python3 -m http.server --directory 'docs/_build/html'

100 Chapter 4. Contents:

https://github.com/KingsburyLab/pyEQL/issues
https://github.com/KingsburyLab/pyeql
https://www.sphinx-doc.org/en/master/

pyEQL Documentation, Release v0.15.1

4.16.3 Contributing Code

To contribute bug fixes, documentation enhancements, or new code, please fork pyEQL and send us a pull request. It’s
not as hard as it sounds! Beginning with version 0.6.0, we follow the GitHub flow workflow model.

The Scientific Python Guide is also an excellent technical reference for new and longtime developers.

Submit an issue

Before you work on any non-trivial code contribution it’s best to first create a report in the issue tracker to start a
discussion on the subject. This often provides additional considerations and avoids unnecessary work.

Hacking pyEQL, step by step

1. Fork the pyEQL repository on Github

2. Clone your repository to a directory of your choice:

git clone https://github.com/<username>/pyEQL

3. Install the package and the test dependencies by running the following command from the repository directory:

pip install -e '.[testing]``

4. Create a branch for your work. Preferably, start your branch name with “feature-”, “fix-”, or “doc-” depending
on whether you are contributing bug fixes, documentation or a new feature, e.g. prefix your branch with “fix-”
or “doc-” as appropriate:

git checkout -b mybranch

or

git checkout -b doc-mydoc

or

git checkout -b feature-myfeature

5. Make changes to the code until you’re satisfied.

6. Push your work back to Github:

git push origin feature-myfeature

7. Create a pull request with your changes. See this tutorial for instructions.

4.16. Contributing to pyEQL 101

https://docs.github.com/en/get-started/quickstart/github-flow
https://learn.scientific-python.org/development/guides/
https://github.com/KingsburyLab/pyEQL/issues
https://help.github.com/articles/fork-a-repo/
https://yangsu.github.io/pull-request-tutorial

pyEQL Documentation, Release v0.15.1

4.16.4 Guidelines

Please abide by the following guidelines when contributing code to pyEQL:

• All changes you make to quacc should be accompanied by unit tests and should not break existing tests. To run
the full test suite, run pytest tests/ from the repository directory.

• Code coverage should be maintained or increase. Each PR will report code coverage after the tests pass, but you
can check locally using pytest-cov, by running pytest --cov tests/

• All code should include type hints and have internally consistent documentation for the inputs and outputs.

• Use Google style docstrings

• Lint your code with ruff by running ruff check --fix src/ from the repo directory. Alternatively, you
can install the pre-commit hooks by running pre-commit install from the repository directory. This will
prevent committing new changes until all linting errors are fixed.

• Update the CHANGELOG.md file.

• Ask questions and be open to feedback!

4.16.5 Documentation

Improvements to the documentation are most welcome! Our documentation system uses sphinx with the Materials for
Sphinx theme. To edit the documentation locally, run tox -e autodocs from the repository root directory. This will
serve the documents to http://localhost:8000/ so you can view them in your web browser. When you make changes to
the files in the docs/ directory, the documentation will automatically rebuild and update in your browser (you might
have to refresh the page to see changes).

4.16.6 Changelog

We keep a CHANGELOG.md file in the base directory of the repository. Before submitting your PR, be sure to update the
CHANGELOG.md file under the “Unreleased” section with a brief description of your changes. Our CHANGELOG.md file
lossely follows the Keep a Changelog format, beginning with v0.6.0.

4.17 Contributors

pyEQL was originally written by Prof. Ryan Kingsbury (@rkingsbury) and is primarily developed and maintained by
the Kingsbury Lab at Princeton University.

Other contributors, listed alphabetically, are:

• Kirill Pushkarev (@kirill-push)

• Dhruv Duseja (@DhruvDuseja)

• Andrew Rosen (@arosen93)

• Hernan Grecco (@hgrecco)

(If you think that your name belongs here, please let the maintainer know)

102 Chapter 4. Contents:

https://pytest-cov.readthedocs.io/en/latest/
https://github.com/astral-sh/ruff
https://bashtage.github.io/sphinx-material/
https://bashtage.github.io/sphinx-material/
http://localhost:8000/
https://keepachangelog.com/en/1.0.0/

pyEQL Documentation, Release v0.15.1

4.18 License

Copyright (c) 2013-2023 Ryan S. Kingsbury

pyEQL is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; version 3.0 of the License.

A copy of the GNU Lesser General Public License is included in the pyEQL package in the file COPYING. If you did
not receive this copy, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
USA.

Data included in pyEQL’s databases (/database directory) is used with permission of the authors. If you wish to re-
distribute these databases as part of a derived work, you are advised to contact the authors or publishers for copyright
information.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

4.18. License 103

pyEQL Documentation, Release v0.15.1

104 Chapter 4. Contents:

BIBLIOGRAPHY

[aq] https://www.aqion.de/site/electrical-conductivity

[hc] http://www.hydrochemistry.eu/exmpls/sc.html

[stm] Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed, pp 165. Wiley Interscience, 1996.

[wk3] https://en.wikipedia.org/wiki/Debye_length#Debye_length_in_an_electrolyte

[sata] Sata, Toshikatsu. Ion Exchange Membranes: Preparation, Characterization, and Modification. Royal Society
of Chemistry, 2004, p. 10.

[wk] http://en.wikipedia.org/wiki/Osmotic_pressure#Derivation_of_osmotic_pressure

[rs] Robinson, R. A.; Stokes, R. H. Electrolyte Solutions: Second Revised Edition; Butterworths: London, 1968,
p.32.

[koga] Koga, Yoshikata, 2007. *Solution Thermodynamics and its Application to Aqueous Solutions:

[mistry] Mistry, K. H.; Hunter, H. a.; Lienhard V, J. H. Effect of composition and nonideal solution behavior on
desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013,
318, 34-47.

[may] May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011).
A Generic and Updatable Pitzer Characterization of Aqueous Binary Electrolyte Solutions at 1 bar and
25 °C.

Journal of Chemical & Engineering Data, 56(12), 5066-5077. doi:10.1021/je2009329

[stumm] Stumm, Werner and Morgan, James J. Aquatic Chemistry, 3rd ed, pp 165. Wiley Interscience, 1996.

[rbs] Robinson, R. A.; Stokes, R. H. Electrolyte Solutions: Second Revised Edition; Butterworths: London, 1968,
p.32.

[mistry] Mistry, K. H.; Hunter, H. a.; Lienhard V, J. H. Effect of composition and nonideal solution behavior on
desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013,
318, 34-47.

[may] May, P. M., Rowland, D., Hefter, G., & Königsberger, E. (2011). A Generic and Updatable Pitzer Characteri-
zation of Aqueous Binary Electrolyte Solutions at 1 bar and 25 °C. Journal of Chemical & Engineering Data,
56(12), 5066-5077. doi:10.1021/je2009329

[rbs] Robinson, R. A.; Stokes, R. H. Electrolyte Solutions: Second Revised Edition; Butterworths: London, 1968,
p.32.

[mstry] Mistry, K. H.; Hunter, H. a.; Lienhard V, J. H. Effect of composition and nonideal solution behavior on
desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013,
318, 34-47.

105

https://www.aqion.de/site/electrical-conductivity
http://www.hydrochemistry.eu/exmpls/sc.html
https://en.wikipedia.org/wiki/Debye_length#Debye_length_in_an_electrolyte
http://en.wikipedia.org/wiki/Osmotic_pressure#Derivation_of_osmotic_pressure

pyEQL Documentation, Release v0.15.1

[kim] Kim, Hee-Talk and Frederick, William Jr, 1988. “Evaluation of Pitzer Ion Interaction Parameters of Aqueous
Electrolytes at 25 C. 1. Single Salt Parameters,”

[arch] Archer, Donald G. and Wang, Peiming. “The Dielectric Constant of Water

106 Bibliography

INDEX

Symbols
__init__() (pyEQL.Solution method), 61
_debye_parameter_B() (in module

pyEQL.activity_correction), 83
_debye_parameter_activity() (in module

pyEQL.activity_correction), 83
_debye_parameter_osmotic() (in module

pyEQL.activity_correction), 84
_debye_parameter_volume() (in module

pyEQL.activity_correction), 84
_get_property() (pyEQL.Solution method), 75
_pitzer_B_MX() (in module

pyEQL.activity_correction), 85
_pitzer_B_phi() (in module

pyEQL.activity_correction), 86
_pitzer_f1() (in module pyEQL.activity_correction),

86
_pitzer_f2() (in module pyEQL.activity_correction),

87
_pitzer_log_gamma() (in module

pyEQL.activity_correction), 87

A
add_amount() (pyEQL.Solution method), 70
add_solute() (pyEQL.Solution method), 70
add_solvent() (pyEQL.Solution method), 70
adjust_temp_arrhenius() (in module

pyEQL.equilibrium), 95
adjust_temp_pitzer() (in module

pyEQL.equilibrium), 96
adjust_temp_vanthoff() (in module

pyEQL.equilibrium), 96
alkalinity (pyEQL.Solution property), 67
alpha() (in module pyEQL.equilibrium), 97
anions (pyEQL.Solution property), 64
as_dict() (pyEQL.Solution method), 76

B
balance_charge (pyEQL.Solution attribute), 62
bjerrum_length (pyEQL.Solution property), 68

C
cations (pyEQL.Solution property), 64
charge_balance (pyEQL.Solution property), 66
chemical_system (pyEQL.Solution property), 64
components (pyEQL.Solution attribute), 62
conductivity (pyEQL.Solution property), 65
create_water_substance() (in module pyEQL.utils),

99

D
database (pyEQL.Solution attribute), 62
debye_length (pyEQL.Solution property), 67
density (pyEQL.Solution property), 63
dielectric_constant (pyEQL.Solution property), 64
donnan_eql() (in module pyEQL.functions), 60

E
elements (pyEQL.Solution property), 64
entropy_mix() (in module pyEQL.functions), 59
EOS (class in pyEQL.engines), 79
equilibrate() (pyEQL.engines.EOS method), 79
equilibrate() (pyEQL.engines.IdealEOS method), 80
equilibrate() (pyEQL.engines.NativeEOS method),

80
equilibrate() (pyEQL.Solution method), 72

F
format_solutes_dict() (in module pyEQL.utils), 99
FormulaDict (class in pyEQL.utils), 98
from_dict() (pyEQL.Solution class method), 76
from_file() (pyEQL.Solution class method), 78
from_preset() (pyEQL.Solution class method), 77

G
get_activity() (pyEQL.Solution method), 73
get_activity_coefficient() (pyEQL.engines.EOS

method), 79
get_activity_coefficient()

(pyEQL.engines.IdealEOS method), 80
get_activity_coefficient()

(pyEQL.engines.NativeEOS method), 80

107

pyEQL Documentation, Release v0.15.1

get_activity_coefficient()
(pyEQL.engines.PhreeqcEOS method), 82

get_activity_coefficient() (pyEQL.Solution
method), 73

get_activity_coefficient_davies() (in module
pyEQL.activity_correction), 88

get_activity_coefficient_debyehuckel() (in
module pyEQL.activity_correction), 89

get_activity_coefficient_guntelberg() (in mod-
ule pyEQL.activity_correction), 89

get_activity_coefficient_pitzer() (in module
pyEQL.activity_correction), 90

get_amount() (pyEQL.Solution method), 69
get_apparent_volume_pitzer() (in module

pyEQL.activity_correction), 92
get_chemical_potential_energy()

(pyEQL.Solution method), 74
get_components_by_element() (pyEQL.Solution

method), 69
get_effective_molality()

(pyEQL.salt_ion_match.Salt method), 78
get_el_amt_dict() (pyEQL.Solution method), 69
get_lattice_distance() (pyEQL.Solution method),

76
get_moles_solvent() (pyEQL.Solution method), 71
get_osmolality() (pyEQL.Solution method), 71
get_osmolarity() (pyEQL.Solution method), 71
get_osmotic_coefficient() (pyEQL.engines.EOS

method), 79
get_osmotic_coefficient()

(pyEQL.engines.IdealEOS method), 80
get_osmotic_coefficient()

(pyEQL.engines.NativeEOS method), 81
get_osmotic_coefficient()

(pyEQL.engines.PhreeqcEOS method), 82
get_osmotic_coefficient() (pyEQL.Solution

method), 74
get_osmotic_coefficient_pitzer() (in module

pyEQL.activity_correction), 93
get_salt() (pyEQL.Solution method), 71
get_salt_dict() (pyEQL.Solution method), 72
get_solute_volume() (pyEQL.engines.EOS method),

80
get_solute_volume() (pyEQL.engines.IdealEOS

method), 80
get_solute_volume() (pyEQL.engines.NativeEOS

method), 82
get_solute_volume() (pyEQL.engines.PhreeqcEOS

method), 82
get_total_amount() (pyEQL.Solution method), 70
get_total_moles_solute() (pyEQL.Solution

method), 71
get_transport_number() (pyEQL.Solution method),

75

get_water_activity() (pyEQL.Solution method), 74
gibbs_mix() (in module pyEQL.functions), 59

H
hardness (pyEQL.Solution property), 67

I
IdealEOS (class in pyEQL.engines), 80
interpret_units() (in module pyEQL.utils), 99
ionic_strength (pyEQL.Solution property), 66

M
mass (pyEQL.Solution property), 63
module

pyEQL.activity_correction, 83
pyEQL.engines, 79
pyEQL.equilibrium, 95
pyEQL.functions, 59
pyEQL.salt_ion_match, 78
pyEQL.utils, 98

N
NativeEOS (class in pyEQL.engines), 80
neutrals (pyEQL.Solution property), 64

O
osmotic_pressure (pyEQL.Solution property), 68

P
p() (pyEQL.Solution method), 63
pH (pyEQL.Solution property), 63
PhreeqcEOS (class in pyEQL.engines), 82
pressure (pyEQL.Solution property), 63
print() (pyEQL.Solution method), 77
pyEQL.activity_correction

module, 83
pyEQL.engines

module, 79
pyEQL.equilibrium

module, 95
pyEQL.functions

module, 59
pyEQL.salt_ion_match

module, 78
pyEQL.utils

module, 98

S
Salt (class in pyEQL.salt_ion_match), 78
set_amount() (pyEQL.Solution method), 70
Solution (class in pyEQL), 61
solvent (pyEQL.Solution attribute), 62
solvent_mass (pyEQL.Solution property), 63

108 Index

pyEQL Documentation, Release v0.15.1

standardize_formula() (in module pyEQL.utils), 99

T
TDS (pyEQL.Solution property), 67
temperature (pyEQL.Solution property), 63
to_file() (pyEQL.Solution method), 78
to_json() (pyEQL.Solution method), 77
total_dissolved_solids (pyEQL.Solution property),

67

U
unsafe_hash() (pyEQL.Solution method), 77

V
validate_monty_v1() (pyEQL.Solution class method),

77
validate_monty_v2() (pyEQL.Solution class method),

77
viscosity_dynamic (pyEQL.Solution property), 64
viscosity_kinematic (pyEQL.Solution property), 65
volume (pyEQL.Solution property), 63

W
water_substance (pyEQL.Solution attribute), 62

Index 109

	Description
	1-minute Tutorial
	Install
	Create a Solution
	Get properties

	Key Features
	Contents:
	Quickstart
	Creating a Solution Object
	Retrieving Solution Properties
	Bulk Solution Properties
	Individual Solute Properties

	Units-Aware Calculations using pint

	pyEQL Overview
	Installation
	Main feature: The Solution class
	Bulk Properties
	Composition
	Species Concentrations
	Transport
	Speciation
	Saving Solution to a file

	Units-Aware Calculations
	Contribution Opportunities

	Tutorials
	Functionality Overview
	Calculating Osmotic Pressure
	pyEQL Tutorial: Calculating Osmotic Pressure
	Installation
	First, create a Solution
	Get the osmotic pressure
	Use a for loop for multiple calculations
	Compare different modeling engines
	Plot the comparison vs. experiment

	Accessing the Property Database
	pyEQL Tutorial: Searching the Property Database
	Installation
	First, import the property database
	How to Search the Database
	Query an example document
	Query a specific document
	Only return a subset of the document
	Query nested fields
	Query multiple documents

	Counting Documents
	More Advanced Query Syntax
	Match multiple items with $in
	Greater than or less than - $gt / $gte / $lt / $lte

	Unique Values

	Installing
	Use a conda environment
	pip install
	Other dependencies
	Installing the development branch
	Manually install via Git

	Creating a Solution
	Empty solution
	Manual Creation
	Using a preset
	From a dictionary
	From a file

	Writing Formulas
	How to Enter Valid Chemical Formulas
	Manually testing a formula
	Formulas you will see when using Solution

	Converting Units
	Quantity objects
	Custom Units

	Getting Concentrations
	Get the amount of a specific solute
	See all components in the solution
	Salt vs. Solute Concentrations
	Total Element Concentrations
	Elements present in a Solution

	Arithmetic Operations
	Addition and Subtraction
	Multiplication and Division

	Saving and Loading from Files
	Serialization to dict
	Saving to a .json file
	Loading from a .json file

	Electrolyte Modeling Engines
	Overview
	The 'native' engine (Default)
	Activity and osmotic coefficients
	Solute volumes
	Speciation

	The 'phreeqc' engine
	Activity and osmotic coefficients
	Solute volumes
	Speciation

	The 'ideal' engine
	Custom engines

	Property Database
	Format
	The Solute class
	Searching the database
	Species included

	Mixing Functions
	Solution Class Reference
	Solution

	Module reference
	Salt Matching module
	Modeling Engines module
	Activity Correction functions
	Speciation functions
	Utilities

	Contributing to pyEQL
	Reporting Issues
	Documentation Improvements
	Contributing Code
	Submit an issue
	Hacking pyEQL, step by step

	Guidelines
	Documentation
	Changelog

	Contributors
	License

	Bibliography
	Index

